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Abstract

Given a finitely generated amenable group H satisfying some mild assumptions, we relate
isoperimetric profiles of the lampshuffler group Shuffler(H) = FSym(H) = H to those of H. Our
results are sharp for all exponential growth groups for which isoperimetric profiles are known, in-
cluding Brieussel-Zheng groups. This refines previous estimates obtained by Erschler and Zheng
and by Saloff-Coste and Zheng.

The most difficult part is to find an optimal upper bound, and our strategy consists in finding
suitable lamplighter subgraphs in lampshufflers. This novelty applies more generally for many
examples of halo products, a class of groups introduced recently by Genevois and Tessera as a
natural generalisation of wreath products.

Lastly, we also give applications of our estimates on isoperimetric profiles to the existence
problem of regular maps between such groups.
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1. INTRODUCTION

It is a recurrent theme in geometric group theory to understand the collection of all maps be-
tween two given finitely generated groups that are compatible with their large-scale geometries.
Such collections include for instance quasi-isometries, coarse embeddings, and more generally
regular maps. The motivation behind this program is that the large-scale geometry of a group is
in fact deeply related to its algebraic structure.

Several milestones have been achieved in the study of the quasi-isometries of many classes
of groups, among which abelian free groups, lamplighters over virtually cyclic groups and other
SOL-like groups [EFW12; EFW13], Baumslag-Solitar groups [FM98; FM99; Why01], or lamp-
lighters over one-ended groups [GT24b].

If one rather wants to exclude the existence of such maps between some spaces, an efficient
strategy is to use invariants, or even monotonuous quantities, that are computable in practice.
Numerous invariants have been introduced for quasi-isometries, including the isoperimetric
profiles which are monotonuous under regular maps, see [DKLMT22]. We refer the reader to
Section 6 for other examples of invariants (asymptotic dimension, volume growth).

The aim of the paper is to compute isoperimetric profiles of lampshufflers, and more generally
of the so-called halo products introduced in [GT24a].

Isoperimetric profiles and Felner functions. For a finitely generated group G with a finite gen-
erating set Sg, and given p > 1, its €P-isoperimetric profile is the function j,c: N — R, given

by
. I f1lp
jpo(m) = sup P
P f:G-R, ”Vpr
[supp fl<n

where the supportof f: G — R, issupp f :={g € G : f(g) # 0} and the ¢P-norm of its gradient
is defined by

IVFIp = >, If(e) - fgs)l.

g€G, seSg

Remark 1.1. We warn the reader that many authors introduce the ¢”-isoperimetric profile with
Il - ||Z instead of || - ||, in the definition, so their £P-isoperimetric profile is j, ; (x)? with our con-
ventions.

The ¢P-isoperimetric profile of a group G is the generalised inverse of its ¢”-Falner function
Fol,c: N — R,, defined as

Ifll, — n

In the case p = 1, these functions are simply called isoperimetric profile and Folner function,
and have a simpler definition (up to asymptotic behaviour), namely

J16(n) = sup 4]
|[Al<n |6GA|

\Y
F@lp,G(I’Z) = 1nf{|suppf| . ” f”p < 1 } .

0GgA 1
and Folg(n) :=inf {|A] : 94| <—1,
Al —n
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where 0gA :=ASg \A={g € G\ A:3s € Sg,3h € A, g = hs} is the boundary of A in G. Note that
we only find the ¢!-Folner function in the literature. In this paper we introduce the more general
¢P versions forp > 1.

Without loss of generality, we may and do assume that the ¢P-isoperimetric profile and the ¢7-
Folner function are real inverses of each other, and not only generalised inverses; see Remark 2.1.

Notice that the ¢P-isoperimetric profile of a finitely generated group is bounded if and only
if the group is not amenable. Therefore, we will only be interested in ¢”P-isoperimetric profiles
of amenable groups. The asymptotic behaviour of the ¢”-isoperimetric profile is, somehow, a
measurement of its amenability; the faster it goes to infinity, the "more amenable" the group is.

Among amenable groups, the ¢7-isoperimetric profile (or equivalently the ¢”-Fglner function)
has been computed for many finitely generated groups. Given p > 1, we have for instance:

® jp(n) = ni if G has polynomial growth of degree d > 1;

® jpc(n) ~In(n) for G =BS(1, k) for k > 2, or G = FZ, where F is a non-trivial finite group;

¢ jpc(n) = In(n) for any polycyclic group G with exponential growth [Pit95; Pit00], or more
generally any exponential growth group within the class GES of Tessera [Tes13];

® jprn(n) = (In(n))@ with F finite, and N having polynomial growth of degree d > 1 [Ers03];

e for any non-decreasing function f: R, — R, such that x +— ﬁ is non-decreasing,
Brieussel and Zheng constructed in [BZ21] a finitely generated group H with exponential
volume growth having isoperimetric profile j, i (x) = ]% ; we will refer to such a group

as a Brieussel-Zheng'’s group.

In fact, isoperimetric profiles and Felner functions have been studied in the more general
framework of bounded degree graphs; see Section 2 for details. For now, let us simply men-
tion that, in this setup, Erschler’s estimates for ¢!-Folner functions of lamplighter graphs [Ers03;
Ers06] will be a key ingredient in our strategy (see Section 4.2).

Itis a well-known fact thatif p > g, then j, ¢ (x) < j;,6(x), see Lemma 4.3. Moreover, a stronger
phenomenon is conjectured: j, g(x) = j;,c(x) forallp,q > 1.

Lampshuffler groups. As a starting point of our work, let us first focus on lampshuffler groups.
Later in the introduction, we will present the more general notion of halo products, constructed
in a similar way to wreath products (as lampshufflers).

Given a group H, the lampshuffler group over H is the semi-direct product
Shuffler(H) := FSym(H) = H

where FSym(H) is the group of finitely supported bijections H — H, and where H acts on the
latter as (h - 0)(x) := ha(h~'x). These groups already appeared several times in the literature,
in relations with many topics of interest in group theory, see for instance [Yad09; HO16; BZ19;
EZ21; SCZ21; GT24a; Sil24].

Let us first present what is known about profiles of lampshufflers and our results for this class
of groups.
Isoperimetric profiles of lampshufflers. In [SCZ21], Saloff-Coste and Zheng establish a general
lower bound on j, shusrier(s) fOr a finitely generated group H, of the form

. 1 .
Jp.H (%) < ]p,Shuferr(H)(x)-

Their proof will be useful since we will present a natural generalisation for halo products, see
Corollary 5.6.

From [SCZ21], we also know upper bounds on j, shuffier(z) for general groups H, and [EZ21]
provides a lower bound on Fol; shusfier (1), €quivalently an upper bound on ji shusfler () -
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Theorem 1.2 ([SCZ21]). Let H be a finitely generated group, with a finite generating set Sy. For
p =1, 2, we have
In(x) )

In(In(x))

Here, Vi 5, refers to the growth function of H with respect to the finite generating set Sy;. Note
that the statement in their paper appears with an exponent p, since we do not use the same con-
vention; see Remark 1.1.

Jp.Shuffler(i) (X) < V7§ (

’ uffle (11)( ) s VH SH ('() SH (x).

From these theorems, one can deduce for instance the isoperimetric profile of lampshufflers
over polynomial growth groups:

In(x) )5

J1Shuffler(a) (X) = (ln(ln(x))

when H has polynomial growth of degree d > 1.

For many groups, the lower and upper bounds provided by these results are not the same, so
they do not provide precise estimates on the isoperimetric profiles of lampshufflers. Theorem A
below provides finer estimates. It is in fact an application of Corollary F, that we deduce from
Theorem E, stated in the more general context of halo products. Before defining these groups, let
us focus on lampshufflers and the consequences of Theorem A.

In our statements, saying that j, y satisfies Assumption (*) means that j, 5 (Cx) = O(jp,u(x))
forany C > 0.

Theorem A (see Corollary 5.7). Letp > 1. Let H be a finitely generated amenable group whose £P -
isoperimetric profile j, y satisfies Assumption (). Then, the (P -isoperimetric profile jp, shusfler (i) Of
Shuffler(H) satisfies

) In(x)
IpH (ln(ln(x))

Assumption (x) already appeared several times in the literature, see e.g. [Ers03; Corr24] for the
case p = 1, and does not seem to be restrictive. In fact, to our knowledge, there is no known exam-
ple of a finitely generated amenable group whose isoperimetric profiles do not satisfy Assump-
tion (x). For instance, it is easy to check that Brieussel-Zheng’s groups satisfy this assumption
(see [Corr24]), as well as all the examples of isoperimetric profiles we mentioned above.

An immediate consequence of Theorem A is the next statement.

) < Jp,shuffier(r) (X) < j1,a(In(x)).

CorollaryB. Letp > 1. LetH bealfinitely generated amenable group whose €” -isoperimetric profile
Jp,u satisfies Assumption (x). Assume moreover that

. In(x) . : :

ot (i) = 0G0 @ndjosa3) = 2,
Then one has

Jp.shuffler (1) (X) = jp,z(In(x)).
In practice, this result applies for many groups having slow enough profiles, for instance solv-

able Baumslag-Solitar groups BS(1, n), lamplighters over Z¢, or polycyclic groups with exponen-
tial growth. In particular, for the latter class, we recover [SCZ21].

Remark 1.4. Corollary B implies that, if the ¢P-isoperimetric profiles (for p > 1) of H all have the
same asymptotic behaviour, then the same holds for Shuffler(H), under mild assumptions on H.
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One class of groups for which estimates from [EZ21] and from [SCZ21] are not optimal is the
one of iterated lampshufflers, defined inductively by Shuffler®”(H) := Shuffler(Shuffler®*~1(H)) if
n > 1 and Shuffler’®(H) := H. It turns out that iterations of Theorem A yield finer estimates, that
we record in the two following statements.

Proposition C (see Proposition 5.12). Let H be a finitely generated group of polynomial growth of
degreed > 1. Then one has
. In”(x) |
Jp,Shuffier™ (i) (X) = (m)
for any integer n > 1 and any real numberp > 1.

Proposition D (see Proposition 5.11). Letp > 1. Let H be a finitely generated amenable group
whose 0 -isoperimetric profile j, y satisfies Assumption (x). Suppose that

1
jp,H (%) ~ jp,H(ln(x)) and jp,H(x) ~ jl,H(x).

Then, we have
Tp,shuftiern (1) (X) = jp,u(In°" (x))
foralln > 0.

Halo products. In [GT24a], Genevois and Tessera introduced a general class of groups, called
halo products, as a natural generalisation of wreath products. This class encompasses lampshuf-
flers, lampjugglers and lampcloners, and constitutes the suitable framework for our main result
Theorem E.

Definition 1.5. Let X be a set. A halo of groups & over X is the data, for any subset S c X, ofa
group L(S) such that:

e forallR,S c X,if R c Sthen L(R) < L(S);

e L(0) ={1}and L(X) = (L(S) : S c X finite);

e forallR,S c X, L(RNS) = L(R) N L(S).

Given an action H ~ X and a morphism a: H — Aut(L(X)) satisfying a(h)(L(S)) = L(hS) for
any S c X and h € H, the permutational halo product ¥x X is the semi-direct product
Lx,oH = L(X) =g H.
In this paper, we focus on the case X = H. As mentioned, examples of halo products include
e wreath products F! H = (B F) > H, for which L(S) = B, F;
e lampshufflers Shuffler(H) = FSym(H) = H, for which L(S) = FSym(S),
and many other examples are introduced and studied in [GT24a], such as
e lampjugglers Shufflers(H) = FSym(H x {1,...,s}) = H, with an integer s > 1, for which
L(S) =FSym(S x {1,...,s});
e lampcloners Cloner;(H) = FGL(H) ~ H, with a field f, for which L(S) = FGL(S);
e lampdesigners Designer,(H) = (F !y FSym(H)) = H, with a non-trivial finite group F, for
which L(S) = F ts FSym(S),
where S denotes any subset of H. Here, FGL(H) denotes the group of linear automorphisms of
the abstract f-vector space Vi admitting H as a basis, fixing all but finitely many basis vectors. We
refer the reader to Section 3 for more details.
The motivation in [GT24a] to introduce such a general framework is that the semi-direct prod-
uct structure provides a foliation of these spaces that must be, if H satisfies additional mild as-
sumptions, "quasi-preserved" by quasi-isometries, allowing the authors to show strong rigidity
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phenomena for quasi-isometries between such spaces, and thus extending the classification al-
ready obtained in [GT24b].

Isoperimetric profiles of halo products. In this paper, our aim is to show that the halo structure
is also particularly well-suited for tracking isoperimetric profiles of these groups. Namely, we
prove the following two estimates on their Folner functions. The terminologies and notations
are explained just after the statement.

Theorem E (see Proposition 4.1 and Theorem 4.2). Letp > 1. Let H be a finitely generated
amenable group and let Sy be a finite generating set of H. Let ZH be a naturally generated halo
product over H.

(i) If ZH is large-scale commutative and has finitely generated blocks, then for any sy € Sy,
there exists a constant C > 0 such that

l
(P@lL({lHYSO})(x))CF@H(x) < F@lpng(x).
(i) If H has consistent blocks, then there exists a constant C > 0 such that
F@lp_gH(x) < F@lp'H(x) . AgH(C . F@lp,H(x)).

A halo product £ H has finite (resp. finitely generated) blocks if L(S) is finite (resp. finitely gen-
erated) for any finite subset S ¢ H, and £ H has consistent blocks if its blocks are finite and more-
over the cardinality of L(S) only depends on |S|. This assumption allows to define, as in [GT24a],
a function Agy: N — N sending any n € N to |L(S)| where |S| = n, called the lamp growth
sequence of ZH.

Moreover, ZH is large-scale commutative if there is D > 0 such that for any subsets R, S ¢ H
that are at least D far apart in H, L(R) and L(S) commute in L(H). Such a notion has been in-
troduced in [GT24a] as a key assumption to understand the general form of quasi-isometries be-
tween halo groups. Lastly, #H is naturally generated if it admits the natural and simplest gener-
ating set that we can imagine for a halo product, in view of the classical finite generating sets for
lamplighters and lampshufflers.

For instance, a lamplighter F : H and a lampshuffler Shuffler(H) are large-scale commutative
(with D = 0for F: H, D = 1 for Shuffler(H)), are naturally generated, and have consistent blocks,
with lamp growth sequences given by

App(n) =|F|" and Ashyfrier(r)(n) = nl.

Towards the proof of Theorem E. The lower bound is a direct computation, presented in Sec-
tion 4.1, and inspired from the computations in the proof of [SCZ21] in the case of lampshufflers.
We exhibit an explicit sequence of almost invariant functions #H — R from one such sequence
of H. Namely, a sequence (f;,),en Of functions H — R, realising the ¢”-isoperimetric profile of
H (or equivalently its €7 -Folner function), gives rise to a sequence (g,),en for ZH, defined by

g: YH — R
(U,h) — fn(h)']laeL(Vn)

with V, := Uses,, (supp fi)s. This naturally provides alower bound for the ¢”-isoperimetric profile
of ZH.

The technical part is on the upper bound, and Section 4.2 provides such a bound in a general
situation. In the particular case of lampshulfflers, a strategy, well-known to the experts, consists in
finding a "good" lamplighter subgroup of Shuffler(H), in the sense that this lamplighter should be
based on a subgroup K of H which is quasi-isometric to H, or at least has the same isoperimetric
profile. For this, [Sil24] is helpful. We may refer the reader to Appendix A where the aforemen-
tioned method is presented and is instructive for the sequel. The upper bound then follows from

6
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the monotonicity of the ¢”-isoperimetric profile when passing to finitely generated subgroups.
Finding such lamplighter subgroups requires some algebraic assumptions on the base group,
such as being non perfect or non co-Hopfian. Such classes of groups provide, at first glance, a
nice framework (see Remark A.6 and Proposition A.7) and encompass already many classical ex-
amples (e.g. all solvable groups).

Remark 1.6. Notice that many halo products (lampjugglers Shufflers(H) with s > 2, lampdesign-
ers Designer;(H) and lampcloners Clonerg (H)) still contain a lamplighter based on H (we explain
it in Section 3.1, after the definition of lampcloners). On the other hand, there exist examples,
other than lampshufflers, which do not contain a "good" lamplighter as a subgroup a priori. In
this paper, we exhibit such examples that we call lampupcloners, which do not consider matri-
ces (as lampcloners do) but upper triangular matrices with diagonal entries equal to 1. The base
group must be ordered for "upper triangular” to have a proper meaning and we will assume that
the order is total. In this paper, we will focus on the case H = Z¢ with the lexicographic order.

The goal is to find another strategy for the lampshufflers or other halo products which do not
contain a "good" lamplighter as a subgroup. Nonetheless, for these specific cases, the idea of
finding substructures still remains fruitful. In Section 4.2, we therefore make use of the more
general notion of lamplighter graphs, that turn out to appear naturally in halo products as sub-
graphs. Large-scale commutativity will be a key ingredient since we need configurations of lamps
to commute. In the particular case of lampshulfflers, this novelty has the advantage, compared to
Appendix A, of requiring no assumptions on the base group H. We then conclude by establishing
the monotonicity of the Folner function when passing to such subgraphs, in a similar manner as
in [Ers03].

Consequences of Theorem E. We first deduce from Theorem E that, if #H is large-scale com-
mutative, is naturally generated and has consistent blocks, then for every p > 1, its ¢”-Folner
function satisfies

KFol () < Fol, o5 (x) < Foly i (x) - Az (C - Foly i (x))
for some positive constants C, K > 0.

Now, in terms of isoperimetric profiles, the main result is the following.

Corollary F (see Corollaries 5.5 and 5.6). Letp > 1. Let H be a finitely generated amenable group
whose (P -isoperimetric profile j, iy satisfies Assumption (x). Let ZH be a naturally generated halo
product over H, having finite blocks.

(i) If £ H is large-scale commutative, then we have
Jp.zu (%) < j1,u(In(x)).
(ii) If ZH has consistent blocks, then we have
oo (x) 7 jpu(e ! (x))
where ¢ (x) = x - Aoy (x) and where Ay is the lamp growth sequence of  H.

We then deduce Theorem A from this corollary. This result also implies that the isoperimetric
profiles of lampjugglers and lampdesigners behave as the isoperimetric profiles of lampshufflers.

Corollary G (see Corollaries 5.7 and 5.15). Theorem A also holds for lampjugglers and lampde-
signers. Moreover, if H has polynomial growth of degreed > 1, we have

In(x) )31

jp,ShufFIerS(H)(x) = jp,DesignerF(H) (x) = (m
foranys > 1, any real number p > 1 and any non-trivial finite group F, similarly to lampshufflers.

7
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Finally, let us also illustrate Corollary F with lampcloners.

Corollary H (see Corollary 5.16). Letp > 1. Let H be a finitely generated amenable group, whose
P -isoperimetric profile j, i satisfies Assumption (x). Letf be a finite field. Then one has

it (VIRG0) < i cloners 1) () <z (In()).
Hence, in the setting of the above corollary, we have
jp,CIonerg(H) (x) = jl,H(ln(x))

when jj, g (\/ln(x)) ~ jp g (In(x)), and

(L.1) (In(X))3 < jp Cloner (1) () < (In(x))4

when H has polynomial growth of degree d > 1. The same holds for our new example of
halo products Upcloner;(Z%), see Corollary 5.19 (and Section 3.1 for a precise definition of these
groups).

In the case of polynomial growth groups H, we have in fact the following slight improvement
of (1.1) for the upper bound:

In(x) \?
ln(ln(x))) ’

since Shuffler(H) is a subgroup of Cloners (H) (consider permutation matrices in FGL(H)).

Jp,Cloner; (i) (%) < (

Applications to regular maps. We now turn to the problem of the existence of quasi-isometries
and regular maps between commonly studied spaces, which has been widely investigated in the
literature, see e.g. [BST12; Tes20; HMT20; HMT22; Ben22; HMT25] among others. In these arti-
cles, the main guideline is, mostly, to associate to spaces new quantities that are monotonuous
under regular maps, and that are thiner than the most obvious ones, such as volume growth or
asymptotic dimension. As a concrete example, the volume growth does not say anything about
the existence of a regular map

Hp' X R — Hg? x R®

whereas Poincaré profiles, introduced and studied in [HMT20], impose a monotonic behaviour
for the dimension of hyperbolic spaces and the growth exponent of the second factors [HMT22].

On the amenable side, isoperimetric profiles remain powerful invariants to distinguish groups
of exponential growth up to quasi-isometry. As an illustration:

Theorem I (see Corollary 6.3). Letn, m > 0. Let A and B be infinite virtually abelian finitely gen-
erated groups, with growth degrees a and b respectively. Then the following are equivalent:

(i) Shuffler®™(A) and Shuffler°™ (B) are quasi-isometric.
(ii) n=manda =b.
(iii) Shuffler®”(A) and Shuffler®™ (B) are biLipschitz equivalent.

Two comments are in order here. Firstly, the fact that Shuffler°” (A) and Shuffler°” (B) are quasi-
isometric implies that @ = b can also be detected with the asymptotic dimension. Indeed,
Shuffler(A) (more generally Shuffler°”(A)) and A have same asymptotic dimension. On the other
hand, the asymptotic dimension does not detect numbers of iterations we make, whereas isoperi-
metric profiles do. These invariants are therefore more powerful with this respect. Additionally,
regarding other monotonuous quantities under regular maps, volume growth is unhelpful, as it
is exponential for both groups (when n, m > 1).

8
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Secondly, it is worth noticing that, for (iterated) lampshufflers over virtually abelian groups or
groups with slow profiles (see Corollary 6.1), being quasi-isometric is the same as being biLips-
chitz equivalent. This rigidity is in sharp contrast with lamplighters over Z [Dym10] or over one-
ended groups [GT24b], classes in which there are pairs of quasi-isometric groups that are not
biLipschitz equivalent.

We refer the reader to Corollary 6.5 and Remark 6.6 for asymmetric versions of Theorem I,
about the existence of a regular map

Shuffler®” (A) — Shuffler°”(B)

for polynomial growth groups A and B (not necessarily virtually abelian). A nice consequence of
these studies is the following.

Corollary J (see Corollary 6.7). Let n,m > 0. Let A and B be infinite virtually abelian finitely
generated groups, with growth degrees a and b respectively. Then the following are equivalent:

(i) the three equivalent assertions of Theorem I hold;
(ii) Shuffler°™(A) regularly embeds Shuffler®” (B), and Shuffler™(B) regurlarly embeds into
Shuffler®” (A).

Another interesting consequence of our computations of isoperimetric profiles is the follow-
ing statement, which cannot be reached with methods from [GT24a], even for quasi-isometric
or coarse embeddings. Indeed, in the latter is introduced a key property, called the thick bigon
property, which is a crucial assumption for the study of quasi-isometries between halo products.
Unfortunately, this property is not stable under iterations of lampshufflers, and cannot be used
for Shuffler®™ (z%) for instance.

Proposition K (see Corollary 6.11). Letd, k, n > 1 be three integers. If there exists a regular map
Shuffler™(2%) — 7/27 (227 (... (2]2Z 1 Z*%))),
where the wreath product is iterated n times, thend < k.

In relation with the results from [GT24a], we expect in fact that there is no regular map from
Shuffler°™(Z2%) to Z/2Z 1 (Z/2Z (... (Z]2Z 1 Z¥))), even when d < k.

Finally, we emphasize here that similar results can be obtained for other halo products, such
as lampjugglers, lampdesigners, and lampcloners (except when the base group has polynomial
growth since we do not have a precise estimate of j; cioner, (7 in this case).

Plan of the paper. After a few preliminaries in Section 2, we introduce halo products in Section 3,
with the main assumptions we will need to study them. Section 4 is devoted to the computa-
tion of Falner functions for halo products, and we deduce estimates for isoperimetric profiles
in Section 5. This finally implies existence and non-existence results of regular maps and quasi-
isometries between such groups, see Section 6. Lastly, Appendix A presents various minimal al-
gebraic assumptions under which lamplighters appear as subgroups of lampshufflers.
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2. NOTATIONS AND PRELIMINARIES

2.1. Notations.

Given non-decreasing functions f, g: R.g — R.o, wewrite f(x) = O(g(x)) ifthere exists C > 0

such that f(x) < Cg(x) for all x large enough, and f(x) = o(g(x)) if [x) goes to 0 as x goes to +oo.

g(x)
We write f ~ g, and we say that f and g are equivalent, if % goes to 1 as x goes to +oo.

A slightly weaker notion is the one of asymptotic equivalence. Namely, if f, g: R, — R, are
non-decreasing, we say that f is dominated by g, and we write f < g, if there is a constant C > 0
such that f(x) = O(g(Cx)). We say that f and g are asymptotically equivalent, written f ~ g, if
f < gand g < f. Note that two equivalent functions are asymptotically equivalent.

Given a group G, we denote 1 its neutral element, and if G is generated by a finite set S,
Cay(G, S) refers to the Cayley graph of G with respect to S, that is the graph whose vertices are
elements of G and whose edges are pairs of the form (g, gs) withg € Gands € (SUS™!) \ {1y},
while | - |s denotes the usual length function on G associated to S, and ds stands for the left-
invariant word metric associated to S. The notation V; s refers to the growth function of G, de-
fined by V; s(n) := |{g € G : |g|s < n}|. Recall that its asymptotic behaviour, in the sense of =, is
independent of the choice of S.

2.2. Coarse geometry and coarse maps.

We now recall many basic concepts in the study of the large-scale geometry of metric spaces.

Amap f: (X,dx) — (Y,dy) between two metric spaces is a coarse embedding if there exist
two functions ¢_, o, : [0, 00) — [0, o) such that o_(t) — oo when t — ~ and such that

o (dx(x,y)) < dy(f(x), f(y)) < o4(dx(x,y))

for all x,y € X. The maps o_, o, are called the parameters of f. If those parameters are both
affine functions, we say that f is a quasi-isometric embedding, and without restrictions we may
assume that o, and o_ have multiplicative constants inverses of each other and that their additive
constants differ by the sign. More precisely, given C > 1 and K > 0, we say that f isa (C, K)-quasi-
isometric embedding if

= dx () - K <dy(f(0, /(7)) £ Cdx(5,7) + K

forall x, y € X. Additionally if dy (y, f(X)) < K for all y € Y, we say that f is a quasi-isometry, or a
(C, K)-quasi-isometry. When such a map exists, we say that X and Y are quasi-isometric.

For C > 0, a (C, 0)-quasi-isometry is usually called a biLipschitz equivalence (note that those
maps exactly coincide with bijective quasi-isometries), and amap f: (X, dx) — (Y, dy) satisfy-
ing only

dy(f(x),f(y)) < C-dx(x,y)

for any x, y € X is said to be C-Lipschitz. Lastly, f: X — Y is regular if it is C-Lipschitz for some
C > 0 and pre-images of points have uniformly bounded cardinality: there is m > 1 such that
If '({y})| < mforanyy €Y.

Note that any quasi-isometry is a quasi-isometric embedding, which is itself a coarse embed-
ding, which is itself a regular map, but none of the reverse implications hold. For instance, the
inclusion of a closed compactly generated subgroup in a locally compact compactly generated
group is always a coarse embedding, while it is a quasi-isometry only if the subgroup is undis-
torted, and the map Z — Z, n +— |n|, is aregular map, while it is not a coarse embedding.

10
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2.3. Isoperimetric profiles.

Isoperimetric profile for groups. For a finitely generated group G and a finite generating set Sg,
its €P-isoperimetric profile, for p > 1, is the function j, s : N — R, given by

sup 1/ 1l
ri6or, IVFlp
|supp fl<n
where the supportof f: G — R, issupp f := {g € G : f(g) # 0} and the ¢”-norm of its gradient
is defined by ||Vf||§ =Yg, ses 1f(8) — f(gs)|P. Forp =1, the ¢!-isoperimetric profile is simply
called isoperimetric profile and one has

Jpc(n) =

jra(m ~ sup 14
1A|<n |0GA]

where 0gA :=ASg \A={g € G\ A:3s €Sg,3h € A, g = hs}isthe boundary of Ain G.

Recall also that the isoperimetric profile of a group G is the generalised inverse of its Falner
function Folg: N — R,, defined as

Al "~ n
We more generally define the ¢7-Folner function Fol, g : N — R, foreveryp > 1, as

IVl _ 1}

Folg(n) := inf {|A| : 1964] < l}

Ifll, — n

For every p > 1, Fol, ¢ and j, ; are generalised inverses of each other, and we have Fol; (x) =
Folg (x). Thus, in the sequel, we will always write Folg instead of Fal, ¢.

Fol, g (n) :=inf {lsupp fl:

Remark 2.1. Notice that, given the asymptotic behaviour of the ¢7-Felner function, we can de-
duce the asymptotic behaviour of the ¢”-isoperimetric profile, even though they are not real in-
verses of each other, but only generalised inverses a priori. Indeed, a non-decreasing function
R, — R, is always asymptotically equivalent to an increasing function R, — R, (cf. [Corr24])
and it is not hard to check that ~ is preserved when passing to generalised inverses. Thus, in the
sequel, we can and will assume that the ¢”-Foalner function and the ¢”-isoperimetric profile are
injective and then real inverses of each other. Hence, studying the asymptotic behaviour of j, ¢
is the same as studying the asymptotic behaviour of Fal, ;.

The asymptotic behaviour of isoperimetric profiles is stable under quasi-isometries, and is in
particular independent of the choice of a generating set for G. More generally, ¢”-isoperimetric
profiles are monotonuous when passing to finitely generated subgroups:

Theorem 2.2 ([Ers03]). LetH bea finitely generated subgroup of a finitely generated group G. Then
one has j,c(n) < jpu(n) foreveryp > 1.

This has been widely generalised to general regular maps by Delabie, Koivisto, Le Maitre and
Tessera, using connections with quantitative measure equivalence.

Theorem 2.3 ([DKLMT22]). Let G and H be finitely generated amenable groups. If there exists a
regular map fromG to H, then j, uy(n) < jpc(n) foreveryp > 1.

Equivalently, both results can be stated in terms of Folner functions.

Note that a group is amenable if and only if its isoperimetric profile is unbounded. The idea to
keep in mind is that the isoperimetric profile is a measurement of how much amenable a group is.
The faster the isoperimetric profile tends to infinity, the more the group is amenable. In particu-
lar, the isoperimetric profile is a particularly well suited invariant to distinguish amenable groups

11
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with exponential growth up to quasi-isometries or regular maps, and it has now been computed
for many classes of groups, among which:

® jpg(n) = n if G has polynomial growth of degree d > 1;

* jpc(n) = In(n) for solvable Baumslag-Solitar groups and lamplighters F : Z, where F is a
non-trivial finite group;

* jpc(n) = In(n) for any polycyclic group with exponential growth [Pit95; Pit00], or more
generally any exponential growth group within the class GES of Tessera [Tes13];

® jprn(n) = (ln(n))% with F finite and non-trivial, and N of growth degree d > 1 [Ers03].

More generally, [Ers03] provides a general formula for computing Felner functions of wreath
products, so for instance the last example can be extended to iterated wreath products. Let us
explain with more details Erschler’s result, since it will play an important role in the sequel.

Let G and H be finitely generated groups and assume that for every C > 0, there exists k > 0
such that Foly (kn) > C - Fol(n) for any large enough integer n. Then we have

FQ)leH(x) ~ (FQIG(X)>F01H(X) )

This assumption on Faly, introduced in [Ers03], can also be stated in terms of isoperimetric pro-
file in the following way: for every C > 0, we have j; z(Cx) = O (j1,u(x)). This assumption also
appeared in [Corr24] and we do not have any example of a finitely generated group for which it
does not hold. In Section 5, we will make use of this mild assumption, and we will refer to it as
Assumption (x). In [Ers03], this assumption is used to get rid of some constant appearing in the
lower bound: there exists C > 0 such that

2.1 FQ]GZH(X) = (F@lG(x))CF(/)lH(x) ;

whereas the upper bound is exactly Folg,; (x) < (Folg (x))F“’lH ™) In the particular case of a finite
group G, we have ji g,z (x) =~ j1 g(In(x)) if j1 i satisfies Assumption (x).

The lower bound (2.1) also holds in the context of lamplighter graphs, see Section 4.2. To relate
the work of Erschler on the ¢!-Folner function with the ¢7-Folner function (for p > 1) that we
want to compute for halo products, we will first have to reduce the proof to the case p = 1, thanks
to the well-known fact thatif p > 1, then the ¢7-Fglner function dominates the ¢!-Fglner function
(see Lemma4.3). In fact, itis conjectured that the ¢7-Fglner functions, for p > 1, all have the same
asymptotic behaviour.

A fundamental result in geometric group theory is the one of Coulhon and Saloff-Coste, who
proved in [CSC93] that for a finitely generated group G and a finite symmetric generating set S of
G, one has

|0G F| S 1 1
[Fl— 4IS| Pg(2|F])
for any finite set F ¢ G, where ®;: R.o — N, @ s(¢) := min{n > 0 : V5 s(n) > t} is the inverse
growth function of G. Since then, it has constantly been improved to thiner inequalities, see for
instance [PS22]. Inverting this inequality and taking the sup, one directly gets the upper bound

Ji6(n) < @ s(n)

on the ¢'-isoperimetric profile of G. This upper bound is optimal when G has polynomial growth,
while if it has exponential growth, one only gets j; (n) < In(n). In fact, [BZ21] describes a large
class of possible asymptotic behaviours for isoperimetric profiles of finitely generated groups
with exponential growth, namely for any non-decreasing function f such that x +— % is non-
decreasing, there exists a finitely generated group of exponential growth whose ¢”-isoperimetric

e~ _In(x)
profile is ~ f(?n—(x)) foreveryp > 1.

12
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Isoperimetric profiles are also particularly studied for their relations with return probabilities
of random walks on groups, see for instance [SCZ15; SCZ16; SCZ18; BZ21].

Isoperimetric profile for graphs. Isoperimetric profiles can be defined, more generally, in the
framework of bounded degree graphs, without any underlying algebraic structure. In this paper,
we only focus on the case p = 1, but similar definitions can be made forp > 1.

Since there will be no ambiguity, we will abusively use the same notation for a graph and the
set of its vertices. Given a graph Y, the presence of an edge between two vertices v and w will be
denoted by v ~y w.

Given a graph Y, its isoperimetric profile is the function j; y : N — R, defined by

jrr(n) = sup <A
|[Al<n |0YA|

where, given a finite set A c Y of vertices, 0yA :={v € Y\ A: Ja € A, v ~y a} is the boundary of A
in the graph Y.

In the case of Cayley graphs of finitely generated groups, we recover the corresponding notion
of isoperimetric profile of groups, defined above. Moreover, the invariance of isoperimetric pro-
file under quasi-isometry is still valid in this more general setup. Finally, we analogously define
the Folner function of a graph.

This setup of graphs will be crucial in our paper. Indeed, in Section 4.2, we will define lamp-
lighter graphs and will require a lower bound of their Folner functions.

3. HALO PRODUCTS

In this section, we define halo products and the main classes we are interested in.
3.1. Halo products: definition and main examples.

Definition 3.1. Let X be a set. A halo of groups & over X is the data, for any subset S c X, of a
group L(S) such that:

e forallR,S c X,if R c Sthen L(R) < L(S);
e L(0) ={1}and L(X) = (L(S) : S c X finite);
e forallR,S c X,L(RNS) = L(R) N L(S).

Given an action H ~ X and a morphism a: H — Aut(L(X)) satisfying a(h)(L(S)) = L(hS) for
any S c X and h € H, the permutational halo product ¥x oH is the semi-direct product

Lx.oH = L(X) =g H.

The definition is motivated by permutational wreath products, which are basic examples of
permutational halo products. Indeed, given groups F, H and an action H ~ X, set L(S) := (P4 F
for any S c X. Then %x H coincides with F 1y H, where «a is the action of H on €p F obtained
by permuting the coordinates through the initial action H ~ X. In particular, for X = H and the
left-multiplication action of H on itself, we recover a description of the wreath product F: H as a
halo product.

Let us now describe other examples of halo products. From now on, we only focus on halo
products with X = H, that we simply denote by #H, for the natural action of H on itself by left-
multiplication.

13
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Lampshufflers. Let H be a group, and let FSym(H) be the group of finitely supported permuta-
tions of H, that is the group of bijections H — H that are the identity outside a finite subset of
H. The group H acts naturally on FSym(H), via

(h-0)(x):=ho(h~'x), x€ H
forany h € H and o0 € FSym(H). Indeed, if 0: H — H is a finitely supported bijectionand / € H,
thensoish-oandsupp (h-0o) =h-supp (o), wheresupp (o) :={x € H : 0(x) # x}.
The lampshuyffler group over H, denoted Shuffler(H), is then defined as the semidirect product
Shuffler(H) := FSym(H) =< H.

It coincides with the halo product ZH where L(S) := FSym(S) for any S c H. Additionally, if
H is finitely generated and Sy denotes a finite generating set, then Shuffler(H) is generated by the
finite set

2y = {(TlH'S, ly) :s € SH} U {(ld, s):s €Sy}
where, given any x,y € H, 1, , € FSym(H) is the transposition that swaps x and y, thatis 7, ,(x) =
V> Txy(y) =xand 7, (h) = hforany h # x, y.

An element (o, h) € Shuffler(H) can be seen as a labelling of the vertices of the Cayley graph
Cay(H, Sy) (avertex p € H carries the label o(p)) together with an arrow pointing at some vertex
h € H, and there are two types of moves in Cay(Shuffler(H), ) to go from (o, k) to aneighbouring
vertex:

e either the arrow goes from & to a neighbouring vertex in H;
e or the arrow stands on the vertex h € H, and swaps its label with the label of one of its
neighboursin H.

Lampjugglers. Lampshufflers are in fact particular instances of a broader family of groups, called
lampjugglers. Given a group H and an integer r > 1, the lampjuggler over H is the semi-direct
product
Shuffler, (H) := FSym(H x {1,...,r}) ~H

where H acts on FSym(H x {1, ..., r}) through itsinitial actionon H x{1,...,r} givenby h- (x, 1) :=
(hx,i). It can be described as the halo group ¥ H where L(S) := FSym(S x {1,...,7}),S c H. As
forlampshufflers, lampjugglers over finitely generated groups are finitely generated, and one can
check that if Sy is a finite generating set for H, then the finite set

{(tawi) sy 1r) s €Sp, 1 <4, j <ryuU{(id,s) : s € Sy}
generates Shuffler,(H). Here, an element (o, h) € Shuffler,(H) can be seen as a labelling of the
vertices of Cay(H, Sy) x {1, ..., r} together with an arrow pointing at some vertex h € H. Right-
multiplying (o, h) by a generator from the above set amounts either to move the arrow from h

to a neighbouring vertex ks in H, or to keep the arrow on i € H and switching the labels of two
verticesin h x {1,...,r} and hs x {1,..., r} for some neighbour #s of h.

Lampdesigners. Let F and H be two groups. The lampdesigner over H is the semi-direct product
Designerp(H) := (Fy FSym(H)) ~ H

where H acts on P, F by permuting the coordinates through its action on itself by left-
multiplication and acts on FSym(H) as described above. It is the halo product ZH for the col-
lection L(S) := F s FSym(S), S Cc H.

Lampdesigners are close from lampjuggler groups, and in fact if F is finite, Designerp(H) is a
subgroup of Shuffler|z (H), via the map

Designerp(H) — Shuffler|z (H)
((f,o),h) v+ (d’,h)

14
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where, given a pair (f, o) € Fyy FSym(H), ¢’ is the permutation of H x F given by o’ (h,i) =
(o(h), f(h)i). Note also that Designer(H) contains Shuffler(H) as a subgroup.

Lampcloners. Let H be a group and let f be a field. Denote Vy the f-vector space admitting H as a
basis, and denote {e, : u € H} a formal basis. Let FGL(H) be the group of linear automorphisms
Vg — Vg that fix all but finitely many basis elements. This group can also be seen as the group of
finitely supported invertibles matrices with coefficients in f whose entries are indexed by H x H.
Once again, the action of H on itself naturally yields an action of H on FGL(H). The lampcloner
over H is the semi-direct product

Clonerf(H) = FGL(H) < H.
It is a halo product, for the collection L(S) := FGL(S), for every S ¢ H, where FGL(S) is thought
of as the subgroup of FGL(H) of linear automorphisms Vi — Vj that fix H \ S and that stabilise

the subspace (S) c V.
In addition, if f is finite and if H = (Sy) is finitely generated, then the finite set

{(51H(/1), 1H) :lef \ {O}} U {(TlH,S(A); 1H) :seSy,Aef \ {0}} U {(idVH,S) S € SH}
generates Cloners(H), where, given p,q € Hand A € f \ {0}, §,(A) is the diagonal matrix

VH — VH
6p(A): Z Unep +— Z Hnen + Alpep
heH h#p
and 1,4 () is the fransvection
VH — VH
Tpg(A): Z Uhen +— Z pnen + (pp + Algley -
heH h#p

Thus, thinking of an element (¢, p) € Cloners(H) as a labelling of Cay(H, Sy) (the vertex h € H
has the label ¢(ey) € Vi), together with an arrow pointing at p € H, right multiplying (¢, p) by a
generator from the above set amounts either to move the arrow to an adjacent vertex g of p in H;
or to keep the arrow where it stands and multiply ¢(e,) by a non-trivial element of f; or to keep
the arrow where it stands and to clone the label ¢(e,) and add it to the label of a neighbour of p
after multiplication by an element of f \ {0}.

We refer the reader to [GT24a] for many other possible constructions, such as lampbraiders
and verbal halo products, that encompass for instance nilpotent and metabelian wreath prod-
ucts.

As mentioned in the introduction, the challenging part for the computation of isoperimetric
profiles is to find the optimal upper bound. This is done using the monotonicity of the isoperi-
metric profiles when passing to suitable substructures such as subgroups or even subgraphs. Us-
ing "good" subgroups is a technique known widely by the experts in the case of lampshufflers,
but requires some algebraic assumptions on the base groups (see Appendix A for more details).
It is now a good place to observe that the other examples of halo products we give above already
have lamplighters as subgroups, with the same base groups. More precisely:

e For alampjuggler Shufflers(H), with s > 2, we consider the subgroup
G :={(o, h) € Shufflers(H) : 0({k} x F) ={k} x F forall k € H}.

One can check directly that G is isomorphic to Sym({1,...,r}) ¢ H.
e For alampdesigner Designer(H), we notice that (5, F is a subgroup of F 1y Sym(H), in-
variant under the natural action of H on Fi; Sym(H), so F H is a subgroup of Designer(H).
e Considering the subgroup of FGL(H) generated by diagonal matrices 6;,(A) for h € H and
A € £\ {0}, we easily prove that (f \ {0}) ¢ H is a subgroup of Cloners (H).
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Thus, for these examples, techniques from Section 4 are unnecessary. Let us then give new
examples of halo products which do not contain "good" lamplighter subgroups a priori.

Lampupcloners. Let H be a totally ordered group. Let f be a field. Denote Vj; the f-vector space
admitting H as a basis, and denote {e, : u € H} a formal basis. Let FU(H) be the subgroup of
FGL(H) generated by the transvections 7, 4(A) for p < g and A € f. This group can also be seen
as the group of finitely supported upper triangular matrices with coefficients in f, whose entries
are indexed by H x H, and with diagonal entries equal to 1. Once again, the action of H on itself
naturally yields an action of H on FU(H). The lampupcloner over H is the semi-direct product

Upcloners(H) := FU(H) = H.

It is a halo product, for the collection L(S) := FU(S), for every S ¢ H, where FU(S) is thought
of as the subgroup of FU(H) of linear automorphisms V; — Vj that fix H \ S and that stabilise
the subspace (S) c V. Indeed, to prove the property with the intersection in the definition of
halo product, we notice that FU(S) is the set of linear automorphisms ¢ € FGL(S) satisfying
(eq)«(@(ep)) = 0 for every p,q € H satisfying p < g (where ((es).)nen is the family of coordinate
functions for the basis (e;)ncy 0f Viy). Notice that here we need crucially a total order on H.

We do not know if the finite set
{(t1,,s(A), 1) : s € Sy} U {(idy,, s) : s € Sy}

always generates Upcloner; (H), where Sy is a generating subset of H satisfying s > 1 foreverys €
Sy. In Proposition 3.12, we prove that this is the case for H = Z%, endowed with the lexicographic
order.

3.2. Important assumptions.

Our main results deal with halo products satisfying various important assumptions that we
introduce in this section.

3.2.1. Large-scale commutativity.

The first one has been introduced in [GT24a], under the terminology large-scale commutativ-
ity.
Definition 3.2. Let ZH be a halo product over a finitely generated group H, and let Sy be a finite

generating set of H. We say that ZH is large-scale commutative if there exists a constant D > 0
such that, for any R, S ¢ H with ds,, (R, S) > D, the subgroups L(R) and L(S) commute in L(H).

This notion plays a key role in the quasi-isometry classification of halo groups established
in [GT24a], see e.g. [GT24a]. Examples of large-scale commutative halo products include lamp-
lighters (D = 0), lampshufflers (D = 1), lampcloners (D = 1) and lampupcloners (D = 1).

3.2.2. Finite generating sets.

Let us now turn to terminologies more specific to halo groups over finitely generated groups.
Inspired by lampshufflers, when we are looking for a generating set of a general halo product,
there is a natural candidate. The natural generation property, that we now introduce, is by defi-
nition satisfied by a halo product having this natural candidate as generating set.

Definition 3.3. Let H be a finitely generated group, with a finite generating subset Sy;. We say
that a halo product #H over H is naturally generated if it is generated by the set

{(1r),s) : s € Sy} U U {(o,1y) e PH : o € L({1y,s}))}.

seSy
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We already know from the previous section that our running examples, except lampupclon-
ers, are naturally generated. In this section, we actually prove it once more, highlighting a more
general phenomenon. We will also prove that lampupcloners over free abelian groups (endowed
with the lexicographic order) are naturally generated.

Let us now introduce a terminology relative to the generation for blocks of a halo product.

Definition 3.4. We say that a halo product #H has finite (resp. finitely generated) blocks if, for
any finite subset S c H, L(S) is finite (resp. finitely generated).

For instance, a wreath product F:H, where F is finitely generated, has finitely generated blocks.
Moreover, lampjugglers, lampdesigners, lampcloners and lampupcloners have finite blocks, so
they have finitely generated blocks.

If a naturally generated halo product has finitely generated blocks, then it has a natural finite
generating set:

Fact 3.5. Let H be a finitely generated group and let Sy be a finite symmetric generating set of
H. Let ZH be a halo product over H. Suppose that £ H is naturally generated and has finitely
generated blocks. Then the finite set

Son = {(1Lwy$) s € SuhU | J{(0,1n) € ZH 1 5 € S(s)}
seSy
generates £ H, where S(s) is any finite generating subset of L({1y, s}). o
Natural generation property turns out to be equivalent to another property, that we call the

decreasing length property and that we now define. This equivalent definition will lead us to a
proof by induction when we will need to check that a given halo product is naturally generated.

Definition 3.6. Let H be a finitely generated group, with finite generating set Sy, and let ZH be
a halo product over H. Given a finite subset R c H, we define its length as

IRl == ), Ikl

heR
We say that ZH has the decreasing length property if for every finite subset R ¢ H such that
|R|g > 2, there exist a positive integer k > 1 and k subsets Ry, ..., Ry of H such that
e foreveryi € {1,...,n},onehas |R;|y < |R|u;

e L(R) <(hL(Rj)):heH,1<i<n).
Here is the proof of the claimed equivalence.

Proposition 3.7. Let H be a finitely generated group and let Sy be a finite generating set of H. Let
ZH be a halo product over H. The following assertions are equivalent:
(i) & H is naturally generated.
(ii)) £ H has the decreasing length property.

Proof. Assume that #H is naturally generated. Let R be a subset of H such that |R|y > 2. Given
o € L(R), we know that (o, 1) can be written as a product

(01) hl) oo (O-I”l, hn)

with hy,...,h, € Hand 01...,0, € Uses, L({1n,s}) forevery i € {1,...,n}. The composition
law of the halo product implies that ¢ is a product of elements of the form h; ... h;_10; fori €
{1,...,n}. Choosing Ry, Ry, ... as sets {1y, s} for s € Sy, we have proved the decreasing length

property with respect to R.
Let us now assume that # H has the decreasing length property. We first claim that:

Claim 3.8. L(H) is generated by all the hL({1,s}),h € H,s € Sy.
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Proof of the claim. Since L(H) is generated by the subgroups L(R), for finite subsets R c H, itis
enough to show that every such L(R) is a subgroup of the subgroup generated by the hL({1y, s}),
forh € H and s € Sy. We prove this fact by induction over the length |R|y of R. If |[R|y = 1,
then R is included in {1y, s} for some s € Sy, so L(R) is a subgroup of L({1,s}). Suppose that
|R|;r > 2. By the decreasing length property, there exist finite subsets R, ..., R of H such that
L(R) is asubgroup of (hL(R;) : h € H,1 < i < k) and each R; has length less than the one of R, so
we conclude by induction. |

Now, Claim 3.8 ensures that any (o, 1) € £H can be decomposed as a product of elements
whose first coordinates lie in ey, ses, RL({1,s}). Writing an element h € H as h = s ... s, with
S1,-..,Sn € Sy, we get

(hL({1,s}), 11) = (Lpenys s1) -+« (Logay, $0) (LKL D, 1) (Lo, 557 -+« (Logmy, 5770

where (L(R), 1y) is a shorthand for the set {(o0,1y) € £H : 0 € L(R)}. This shows that (o, 1)
belongs to the subgroup generated by (1, (), Su) U Uses,, (L({1#, $}), 11), as was to be shown. O

Let us point out a simple criterion to check for a halo product, and that guarantees the decreas-
ing length property, and thus the natural generation property.

Definition 3.9. Let ZH be a halo product over a finitely generated group H. We say that #H has
the gluing property if for any subsets R, S ¢ H such that RN S # 0, we have

L(RUS) = (L(R), L(S)).

Example 3.10.

e Wreath products F ¢ H, with a group F, have the gluing property.

e Lampshufflers also satisfy the gluing property. Indeed, given non disjoint subsets R, S C
H, it suffices to prove that every transposition 7., supported in R U S lies in (L(R), L(S)).
If x and y both lie in R (or in S), it is obvious. Otherwise, let us assume x € Rand y € S,
and let us consider z € R N S. Then the conjugation by 7, . (which lies in L(R)) maps 7y,
to 7., (which lies in L(S)), which proves the claim.

e Lampcloners also have the gluing property, with a proof very similar to the case of lamp-
shufflers: we use the fact that blocks are generated by transvections (playing the same role
as the transposition 7,,,) and we conjugate by linear automorphisms acting as transposi-
tions on the canonical basis given by H (as 1y, for the lampshuffler).

e However, lampupcloners do not have the gluing property. Here is a counter-example.
Consider the group Z with its usual order so that we can see elements of blocks over fi-
nite subsets as upper triangular matrices with diagonal entries equal to 1. Let us consider
R ={1,3}and S = {2, 3}. Then we have

1 a b
L({1,2,3}))=43]10 1 cl:a,b,cef
0 0 1
and
1 a 0 1 0 b
LdL2y ={lo 1 0|:aet}, L{1,3H=4{|0 1 0|:bef},
0 0 1 0 0 1
but L({1, 2}) and L({1, 3}) generate the group

1 a b
0 1 O|l:abef
0 0 1

which is a proper subgroup of L({1, 2, 3}).
18
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Proposition 3.11. Let H be a finitely generated group and let Sy be a finite generating set of H. Let
ZH be a halo product over H. If #H has the gluing property, then it is naturally generated.

Note that, in the case of lampshufflers (more generally lampjugglers) and lampcloners, we re-
cover the finite generating sets we exhibited in Section 3.1.

Proof. We in fact check that the decreasing length property is satisfied and we conclude using
Proposition 3.7. Let R be a subset of H, of length > 2. The case |R| = 1 is immediate, since we can
write L(R) = rL({1x}), where R = {r}. Assume that R has cardinality 2. Let us write R = {hy, hs}.
Up to a translation, we can assume that h; = 1 and that h; # 15. Then we write h; =57 ... s, with
$1,..., 8, € Sy and we notice that

L({lH) hl}) < L({lH) $1,8182,...,81 .. Sn})

Applying successively the gluing property, the latter is generated by

L({1g,s1}), L({s1,8182}), ..+, L({S1.--Sn-1,81-.-Sn}).

As,forany 1 < i < n,wehave L({sy...8i-1,81...8i}) = s1...8i-1L({1g, s;}), it suffices to set R; =
{1y, si} (oflength 1) to get the desired property with respect to R.

If R has cardinality greater than or equal to 3, pickany two points i, i’ € R. LetussetR; = {h, h’}
and Ry = R\ {h’}. Their union equals R and they have non-empty intersection, so the gluing
property implies that L(R) is generated by L(R;) and L(R2). Furthermore, |R;|y and |Rz|y are

smaller than |R|y since Ry and R, are proper subsets of R, so we are done. O

We can prove that some lampupcloners are naturally generated, even though they do not sat-
isfy the gluing property.

Proposition 3.12. Let f be a field, let d > 1 be an integer, and endow Z¢ with the lexicographic
order. Then the lampupcloner Upcloners(Z%) is naturally generated.

Proof. Let us first mention that, given a group H, transvections in FGL(H) behave well with re-
spect to commutators, in the sense that:

3.1 Vi, r,s € H VA, pef, 7 (=) 17 s (=) 17, r (D) T s (1) = 77 5(A).
Our goal is to use this identity when r < f < s, for the transvections to be in FU(H).

Let us now prove that Upcloner; (Z%) has the decreasing length property, where Z¢ is endowed
with the lexicographic order and with its canonical basis {ey, ..., e;} as a finite generating set. Let
R be a finite subset of 74, of length > 2, and let us enumerate its elements in an ordered way: R =
{r; <--- < r,},withn = |R|. The case |R| = 1 isimmediate since we can write FU(R) = r; +FU({0}).
If|R| > 3,thenwesetR; = {r;, 7o} and Ry = {ry, 13, ..., 7,}, whose lengths are less than the one of R,
andwe apply (3.1)tor =r;, f =rpandr =r; foreachi € {3,..., n}, to get that FU(R) is generated
by FU(R;) and FU(R9). Let us finally assume that R has cardinality 2. Since r; < ry, we can write

r2_r1:(0,...,O,ki,ki+1,...,kd),

with k; > 1. We know that |ro — 1) —ej|za < |12 = 11|7a < |12|za + |11|7a, namely |ro — 1) — e;|7a < |R|za.
There are several cases to consider.
(1) Ifk; > 2,thenr,—r; —e; > 0. We thushaver; < r; +e; < 1y, soapplying (3.1)tor =ry,s =19
and f = + e;, we get that
FU(R) < FU({I‘l, r +e;, I‘Q}) = (r1 + FU({O, ei}), rn+e;+ FU({O, ro—1 — e,-})).
We are done since we have |{0, e;}|,¢ =1 < |R|z« and |{0, 75 — 11 — e;}|7a < |R|za.
(2) If r, — r1 = e;, then FU(R) = r; + FU({0, ¢;}) and we are done.
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(3) Wefinally assume k; = 1and r, —r; # e;, so that we can define ip :=min {j > i + 1: k; # 0}.
Letusset h :=e; + (ki, — 1)e;,. We have

(rg—rl)j 1f]€ {1,...,d}\{i,i0}
(po-r—h)j=4 0 ifj=i ,
1 ifj =i

sothatro —r —h>0and |ry — 11 — h|za < |12 — 11|74 < |R|za. We also have h > 0, so we get
FU(R) < L({r1,r1 + h,r2}) < (1 + FU({0, h}), ry + h1 + FU({0, 12 — 11 — h}))

with the same techniques, and we similarly claim that we are done.
So Upcloner; (Z9) satisfies the decreasing length property. o

3.2.3. Growth of lamps.

We conclude this section by recalling an important definition from [GT24a], that of the lamp
growth sequence associated to a halo product. In order to define this sequence, we need an addi-
tional mild assumption on our halo products.

Definition 3.13. Let H be a group. We say that a halo product £ over H is consistent if it has finite
blocks and if, for any finite subset S ¢ H, the cardinality of L(S) only depends on the cardinality
of S.

In practice, consistent halo products encompass all classes we are interested in, among which
lamplighters, lampjugglers, lampdesigners, lampcloners and lampupcloners.

Definition 3.14. Let ZH be a consistent halo product over a group H. The lamp growth sequence
of ZH is the function Ay : N — N defined by

Agp: n+— |L(S)|, where |S| = n.

This sequence is well-defined since & is consistent. It has been computed in [GT24a] for many
halo products, such aslamplighters, lampshufflers, lampdesigners, lampcloners and 2—nilpotent
wreath products. For instance, for any group H and finite group F, one has Apy(n) = |F|",
Ashuffier, (1) (1) = (rn)! and Apesigner, () () = |F|"n!. Moreover, given a finite field f, we have

n-1
Acionere(iry () = [ ] (1" = 1£1%)
i=0

and, if H is a totally ordered group,

n-1

. n(n-1)
AUpclonerff(H)(n) = 1—[ |ﬂl = |ﬂ 2.
i=1

In fact, it turns out that the asymptotic behaviour of this sequence is invariant under a special
class of quasi-isometries (and more generally coarse embeddings), referred to in [GT24a] as ap-
tolic quasi-isometries. As proved in [GT24a], under additional assumptions, any quasi-isometry
between two halo products is aptolic (up to finite distance). Thus, for these halo products, the
asymptotic behaviour of the lamp growth sequence is an invariant of quasi-isometry.
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4. ESTIMATES OF THE FOLNER FUNCTIONS OF HALO PRODUCTS

4.1. A general upper bound on the Folner functions: finding almost invariant functions.

In this section, we provide an upper bound on the ¢”-Fglner function of many halo products,
such aslampshufflers, lampjugglers, lampdesigners, lampcloners or lampupcloners over Z¢. The
¢7-Folner function of a finitely generated group G being an infimum over finitely supported func-
tions G — R, the strategy is to exhibit "good" such functions, namely almost invariant functions.
This constitutes the first step towards proving Theorem E.

Observe that, if H is an amenable group, then #H is amenable if and only if L(H) is amenable,
and the latter is often true regardless of H. For instance, if blocks are finite, then L(H) is locally
finite and thus amenable. This is the case when Z H is alamplighter F: H (i.e. F is finite), a lamp-
shuffler Shuffler(H), alampcloner Cloners (H) over a finite field f, or alampupcloner Upcloner; (H).

Therefore, we know that almost invariant functions exist when our halo product has finite
blocks. Here our goal is, in particular, to construct a suitable sequence of almost invariant func-
tions for our halo product from such a sequence for the base group H. The estimates we can
derive enable us to prove the following.

Proposition 4.1. Let H be a finitely generated amenable group, and let & H be a halo product over
H. Suppose that £ H is naturally generated and has consistent blocks. Then, for anyp > 1, there
exists a constant C > 0 such that

F@lpng(X) < F@lpyH(X) . AgH(C . F@lp,H(X)),
where Ay is the lamp growth sequence of ZH.
The proofis inspired by the one of [SCZ21].

Proof. As usual, denote Sy a finite generating set for H. By assumption, the subset
Son ={(1rar),s) s €Sy}t uU U {(o5,1g) : 0 € L({1g,s})}
seSy
generates ZH. Let (f,),>0 be a sequence of functions H — R that realises Fol, y, i.e. Fol, y(n) =

Vs, fu .
|[supp f»| and ” ”s;jjp”” < % forany n > 0. Given n > 0, set

U, :=supp fn, Vy := U U,s

SESH

and
g: £H — R

(o,h) — fu(W)lger,)
Let (o,h) € £H,s € Sy and o5 € L({1,s}). The composition law of #H directly implies that
(o,h)(1m), s) = (0, hs) and (o, h)(0s, 1g) = (o(h - o), h). This implies that
g ((o, ) (1w, s)) — g(o, h) = (f(hs) — fF(h)Lgery)
as well as
4 ((Ur I’l)(O's, 1H)) - g(O’, h) =0
using that o € L(V) ifand onlyif o(h - 05) € L(V) when h € U,,. We thus have
Vssugallh = D, D 18 (0, 1) (1), 9))) = ga (0, 1) P

(o,h)eZH seSu

= D 2 ) = f)Loer,

(o,h)eZLH seSu
= [L(V)| - Vs, fallp-
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We also have
llgnlly = LV - [l fall}-
We finally get
IVsyu8nllp Vs, fullp

= < l
”gn”p ||fn||p n

so, by the definition of the ¢”-Fglner function, it follows that

Fol, o (n) < |supp gal = IL(Va)| - 1Un| = |Unl - Az (IVa]) < Foly i (n) - Agp (ISu| - Folyu(n)).

This concludes the proof. o

4.2. A general lower bound on the Folner functions: finding lamplighter subgraphs.

The goal of this section is to find a lower bound of the ¢”-Fglner function of a halo product.
In Section 5, we deduce, for specific cases, an upper bound of the ¢P-isoperimetric profile which
will often be optimal.

Here is then the general statement.
Theorem 4.2. LetH be a finitely generated amenable group and let Sy be a finite generating set. Let

ZH be a naturally generated and large-scale commutative halo product having finitely generated
blocks. Then, for anyp > 1 and any sy € Sy, there exists a constant C > 0 such that

Fol,
F@lpng(x) b (FﬂlL({lH’SO})(x))C ol (x) .

In the particular case of a halo product with finite blocks, we thus get

Fol, o u(x) = Kol )

for some positive constant K > 0 and any p > 1.

The following lemma will allow us to reduce to the case p = 1. This is a well-known result on
isoperimetric profiles, mentioned in [Cou00], which states that for every finitely generated group
G, jp,c is monotonuous in the variable p > 1 for the order given by <. Here we state it in terms of
Folner functions and we provide a proof for the sake of completeness. Recall that it is conjectured
that the asymptotic behaviour of j, ¢ does not depend on p.

Lemma 4.3 (Folklore). Let G be a finitely generated group and let p, q be real numbers such that
p > q > 1. Then we have Fol, c(x) = Fol;(x).

For Theorem 4.2, we will apply this lemma to g = 1.

Proof. Let f: G — R be a finitely supported function, and consider the function & := |f|” where
V= 5 > 1. Using the inequality |a” — b"| < v max (a, b)'~!|a - b| that holds for every positive real
numbers a, b > 0, we get

IVschllg = > 1h(g) - h(gs)l
g€G, seSg

<vl D F@ICNF @l =1 @l vt > 1F @l I]IF (o) - If (gl

ge€G, seSg g€G, seSg
<v? D AF@ITVI (@) - gl vt YT IF (gl If(g) - F(gs)l.
g€G, seSg g€G, seSg
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Setting P = p and Q = 5o We have + + % = 1, and Holder’s inequality provides

$ o
> V@N“““V@)<ﬂg9WS( D vwnww*v ( D vun—fwﬂfﬂ

g€G, seSg geG, s€Sg g€G, seSg
rP-q q
P p
=l D>, If@r D @ - rgsl
geG, s€Sg g€G, seSg

r—4q —
=1Sal 7 - 1fI" - Ve Il
and similarly for 3¢, ses [ (8519771 (g) - £(g5)19, so that we get

1

r-q
IVsohllg <27 - 1SG| 7 - v 1A - Ve fllp

which in turn implies

Vs.h - \Y
IWschlly o1 g e, I9se7 1y
[P 1715

since ”th Ilf ||p This inequality holds for every finitely supported function f: G — R, namely
we proved that for every such f, this inequality holds for some i: G — R having the same sup-
port, so the statement follows directly from the definition of Faelner functions. o

We now move on to the proof of Theorem 4.2. At first reading, the reader may look at Appen-
dix A, where the strategy is to find "good" lamplighters as subgroups of alampshuffler Shuffler(H),
namely a lamplighter group based on a finitely generated subgroup K of H having the same
isoperimetric profile as H. This is achieved with some algebraic assumptions on the finitely gen-
erated group H, covering a large class of groups. We finally conclude using the result analogous to
Theorem 2.2 for the Folner function. Moreover, this first strategy provides an interesting frame-
work since the algebraic assumptions on the base group H are stable in many cases when taking
iterations of lampshufflers; see Remark A.6 and Proposition A.7.

In this section, we focus on a less restrictive substructure than subgroups, namely subgraphs.
The strategy is to find some subgraph X of H, quasi-isometric to it, playing the role of a subgroup
K as described in the above first strategy, and a lamplighter graph on Xj as a subgraph of ZH, in
such a manner that we can prove the monotonocity of the Folner function in this context, as in
Theorem 2.2. We conclude thanks to the lower bounds for the Folner functions of lamplighter
graphs obtained in [Ers06].

Lamplighter graphs. Let A and B be two graphs, with a base vertex by in B. Givenamap f: A —
B, we define its support by supp f := {a € A : f(a) # bo}. The lamplighter graph of B and A4,
denoted by B 4, is the graph

e whose vertices are pairs (f, a), where a is a vertex of A and f: A — B has finite support;
e whose edges connect (f, a) and (f’, a’) ifeithera = a’, f(a) ~5 f’(a) and f(v) = f’(v) for
everyv € A\ {a},orif f = f"and a ~4 a’.

In the case where the graphs A and B are Cayley graphs of finitely generated groups G and H
respectively, we recover a Cayley graph of the wreath product H : G.

Let us now prove Theorem 4.2 within this framework, using the following lower bound proved
by Erschler [Ers06]: there exists C > 0 such that

Folga(x) = (Folg(x))CFol®)
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Proof of Theorem 4.2. By Lemma 4.3, we have Fol,, o (x) > Folyy (x), soitis enough to prove the
theorem for p = 1.

Given a connected graph Y, we denote by dy (-, -) its path metric. When considering a finitely
generated group H = (S), we write dy s(-, -) for the path metric on its Cayley graph Cay(H, S)
(identified with H itself), to specify the choice of a finite generating subset S.

Now, let us fix a finite generating set S of H, a constant D > 0 of large-scale commutativity for
ZH, and let us consider Sop+s = {s152...S2p+5 : Si € SU {1y}}. Note that, for every x,y € H, we
have the equivalence

des(x,y) <2D+5H dH,52D+5(x,y) <1.

Let Xy be amaximal (D+2)-separated subset of H, for the metric dy s, and let us endow X, with the
graph structure induced by dy s,,,,., namely x, y € Xy are adjacent if and only if dy s,,,.. (x,y) = 1.
It is straightforward to see that (Xo, dx, s,,.;) is a subgraph of (H, dy s,,..). In addition, we also
have the following.

Claim 4.4. The graphs (Xo, dx, s,,.;) and (H, dy s,,..) are quasi-isometric.

Proof of the claim. Let us prove that the natural inclusion Xy <— H is a quasi-isometry. First of all,
by maximality, X, is (D + 2)-dense in (H, ds), and this directly implies dy s, . (h, Xo) < 1 for every
heH.

Letx,y € Xp. It is straightforward to show that dx, s,,.. (x,¥) > dus,,.s(x,¥). The other way
around, let n :=dp s, (x, y). By definition, there exist points

X0 =X,X1,..,Xp-1, Xn =y €H
such that dys,,.. (xi, xi+1) = 1 foreveryi € {0,1,...,n — 1}. Given such an index i, the definition
of Sop+5 implies that there exist points
Xi0 = Xiy Xij1y - - +» Xi 2D+4, Xi,2D+5 = Xi+1 € H
such thatdy s(x; j, xi j+1) < 1foreveryj € {0,1,...,2D +4}. Since we have x; op+5 = x;41,0 for every

i €{0,1,...,n -1}, we have found a path of length < (2D + 5)n in (H, ds) that connects x to y.
Approximating every vertex of this path by an element of X, within dy s-distance less than D + 2
(x and y being approximated by themselves), we get a sequence

Wy =X, W1,...,W2D+5)n-1 W2D+5)n =Y
of elements in X satisfying dy s(w;, wi+1) < 2(D + 2) + 1 = 2D + 5, whence dy s, ., (Wi, wis1) < 1.
This way, we get a path from x to y, of length < (2D + 5)n, in (X, ds,,,,.). Thus

dXOv52D+5 (x,y) < (2D +5) - dH,52D+5 (x,y)
and the proof of the claim is complete. |

Let us fix some distinguished generator sp € S\ {15}. By (D + 2)-separation, for every x € X,

xso does not lie in Xj, and large-scale commutativity thus implies that the groups L({x, xso}), for
x € Xy, commute. Let us now introduce the subgroup 7 of L(H) defined by

T = {l_[ o, : I C X, is finite, o, € L({x,xso})} = @ L({x,xs0}) = @ a(x)L({1H,so0}).

xel xeXp xeXp

Since ZH has finitely generated blocks, we can fix a finite generating subset S(sp) of L({1p, So})-
Let us now consider the set Y, := 7 x X, equipped with a graph structure where two vertices (p, x)
and (p’, x’) of Y, are adjacent if

e either x = x’ and p~'p’ = a(x) (o) for some o € S(sp);

e orp =p’and dx, s, (X, x") =1,
which can be reformulated as
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e either (p,x)(o, 1) = (p’, x’), for some o € S(sp);
e or (p,x)(idg, h) = (p’, x’), where h lies in Syp 5.

Note that the graph Y, is isomorphic to the lamplighter graph L({1y, so}) ¢ Xo. Thus, we endow
& H with the finite generating set Sy given by
Sen ={(0,1g) : 0 € S(s0)} U{(1r(m), h) : h € Sap+s}.

Now, let us consider the partition of L(H) in 7 -cosets:

L(H) =| |xT

ceC

with x., = 17 for the index ¢y € C of the coset 7. For every ¢ € C, let us consider the subset
Y, :=(x.7T) %X H,

equipped with a graph structure where two vertices (x.p, x) and (x.p’, x") are adjacent if

e either x = x’, x liesin Xy and p~'p’ = a(x)(0o) for some o € S(sp), namely (x.p, x)(o, 157) =

( KC pl » x’ );

e orp =p’anddygs,,,, (x,x") = 1, namely (x.p, X)(11(m), h) = (xcp’, x") where h lies in Sap, .
By definition of S¢y, (Y:)cec is a family of subgraphs of (2 H, ds,,,,) partitioning the set of its ver-
tices. Moreover the graph Y is the left translation by (x., 1) of the graph Y;,. These observations
imply

Folgpn(n) = Foly, (n),

as an immediate adaptation of [Ers03]. The next claim is the final step required for the proof.
Claim 4.5. The graphY,, is quasi-isometric to Y.

Proof of the claim. The proof relies on the same technique as in the proof of Claim 4.4. We prove
that Y, — Y, is a quasi-isometry. The 1-density of its image is straightforward, as well as the
inequality

dY*((p’ X), (P/’ x,)) = cho ((p,X), (P,»x/))
for every (p, x), (p’, x’) € Ya.

The other way around, notice that edges of a path of length n := dy, ((p, x), (", x")) in Y, con-
sists in either modifying the permutation on the first coordinate, or moving the arrow pointing
at some element of H in the second coordinate. Thus, with the same ideas as in the proof of
Claim 4.4, it suffices to approximate elements in the second coordinate by elements of Xj, so that
we get a new path in Y, of length < (2D + 5)n. This concludes the proof. |

Combining the above claims, we finally get that

Foley(n) = F(Dlyco (n) = F(Dly* (n) = FQIL({I}-],SQ})ZXO (n)
and the latter dominates (F(Dl L{1m50}) (n)) C'Folyy ("), for some constant C’ > 0, using [Ers06]. From
Claim 4.4, Foly, is asymptotically equivalent to Foly, and thus

1
FOlgH(n) = (FO]L(HH,SO})(I’Z))CFQH(”)

for some constant C > 0. O
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5. ESTIMATES OF ISOPERIMETRIC PROFILES FOR SOME EXAMPLES OF HALO PRODUCTS

The goal of this section is to establish our estimates of ¢”-isoperimetric profiles of many halo
products and their iterated versions, applying our estimates on Folner functions. Here we use
the fact that the ¢7-Folner function and the ¢P-isoperimetric profile are generalized inverses of
each other, and even that we may assume without loss of generality that they are inverses of each
other, using Remark 2.1.

Recall that we proved in the previous section the following.

Theorem 5.1 (see Proposition 4.1 and Theorem 4.2). Letp > 1. Let H be a finitely generated
amenable group and let Sy be a finite generating set. Let ¥ H be a naturally generated halo product
over H.

(i) If ZH is large-scale commutative and has finitely generated blocks, then for any sy € Sy,
there exists a constant C > 0 such that

!
(F@lL({lH'sO})(x))CF@H(x) < F@lp,gH(x).
(ii) If ZH has consistent blocks, then there exists a constant C > 0 such that
F@lp,gH(X) < F@lpyH(X) . AgH(C . F@lp,H(X)).

As an easy consequence, if ZH is large-scale commutative, naturally generated and has con-
sistent blocks, then its Folner function satisfies

KPS Fol, o (x) < Foly i (x) - Aen(C - Foly i (x))
for some positive constants C, K > 0.

Let us first discuss a terminology that will be useful for our main results.

5.1. Assumption (x).

Definition 5.2. We say that a non-decreasing map h: R, — R, satisfies Assumption (%) if
VC > 0, h(Cx) = O(h(x)).
Assumption (x) already appeared in the literature [Ers03; Corr24] in the case where i = j,
is the ¢”-isoperimetric profile of a finitely generated group H, and it seems that j, y satisfies this
assumption for many choices of groups H. In fact, to our knowledge, there is currently no known

example of a finitely generated group whose ¢”-isoperimetric profiles do not satisfy Assump-
tion (x).

First, let us record in a statement an easy implication of Assumption (x).

Lemma 5.3. Let h: R, — R, be a non-decreasing map satisfying Assumption (x). Let
f,g&: Ry — R, be unbounded non-decreasing maps such that f (x) < g(x). Then one has

h(f(x)) < h(g(x)).
Proof. By assumption, f(x) s g(x), so there is a constant C > 0 such that

f(x) < Cg(Cx)
for all x large enough. As & is non-decreasing, we thus get

h(f(x)) < h(Cg(Cx)).
Now, we use h(Cy) = O(h(y)) to deduce that there is a constant K > 0 such that

h(f(x)) < h(Cg(Cx)) < Kh(g(Cx))
for all x large enough. Thus h(f(x)) < h(g(x)) and we are done. |
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Another useful claim is the following.

Lemma5.4. Letf, g, ¢: [1,+00[ — [1, +oo[ be three non-decreasing maps, with ¢ injective and
satisfying ¢(x) w2, oo Assume that there exists a positive constant D > 0 such that
X—+00

g(x) < f(Do(x)).
Then we have
g(Ke™H(x) < f(x)
for some positive constant K > 0. If furthermore g satisfies Assumption (x), then we have
glo~1(x) < f(x).

Proof. By assumption, there exists a positive constant C > 0 such that

g(x) < Cf(Dy¢(Cx))

for all x large enough. Let x be a real number greater than D¢(C), and let n > 1 be an integer such
that Do (Cn) < x < D@p(C(n + 1)). Then we have

P (%)
2C

)

CF () = CF(D(Cn) = gn) 2 5 ("5 2 8 (

which can be reformulated as
g (Ko™ ) =0 (f(Dy)),

taking y = % and K = 5. This shows the first part of the statement. Additionally, if g satisfies
Assumption (x), then we have

glow)=¢ (% -Kw-l(w) =0(g (K¢~ )) =0 (F(DY),
which concludes the proof. i

With Assumption (), we can deduce two applications for the computation of isoperimetric
profiles. The first one reformulates the inequality

)CF@]H (x)

(FolL (15,5 (%) < Foly, om(x)

from Theorem 4.2, in the easier case where the block L({1p, so}) is finite.

Corollary 5.5. Let H be a finitely generated amenable group. Let ¥ H be a naturally generated and
large-scale commutative halo product having finite blocks. Givenp > 1, if j1,y satisfies Assump-
tion (x), then the € -isoperimetric profile of £ H satisfies

Jp.zr(x) < jiu(In(x)).
Proof. By Theorem 4.2 and the fact that L({1g, so}) is finite for every generator sy € Sy, we have
KF) < Fol, ou(y)

for some positive constant K > 0. The logarithm satisfies Assumption (x), as well as j; ;, so
applying twice Lemma 5.3 yields

y < jou (In (Fol, 21 (),
meaning that there exists some positive constant C > 0 such that

y < le,H (hl (F(Z)lp,gH(Cy)))

forall y large enough. If now x islarge enough, it suffices to take y = W+(x) in the above inequality

to deduce the corollary. i
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As a second application, we record in a statement the formulation of the inequality
F@lp,gH(x) < F@lp,H(x) Aoy (C - FOIP,H(JC))

from Proposition 4.1 in terms of isoperimetric profiles.

Corollary 5.6. Let H be a finitely generated amenable group, and let ZH be a halo product over
H. Suppose that £ H is naturally generated and has consistent blocks. Givenp > 1, if j, u satisfies
Assumption (), then one has

oo (x) 7 jpu(e ! (x))
where ¢ (x) = x - Ay (x) and where Aoy is the lamp growth sequence of £ H.

Proof. Letp > 1. From Proposition 4.1, we know that there is a constant D > 0 such that
F@lp,gH(.X) <D- (p(D . F@lp'H(DJC))

for all x large enough. Putting x = j”"’% in this inequality for y large enough, and applying j, #u

which is increasing, one gets
Jp(Y) .
P < Jpzn(D - @(Dy))
for all y large enough, i.e. j, n(¥) < jp,2u(D@(y)). Since j, ; satisfies Assumption (x), we may
apply Lemma 5.4, and we get

o (97 H(x)) < jpzn(x)
as claimed. O

5.2. Lampshufflers and lampjugglers.

We now apply our estimates on isoperimetric profiles to concrete examples, using [GT24a] that
computes the lamp growth sequences of most examples of halo products we are interested in. In
this section, we address the case of lampshulfflers, lampjugglers and their iterated versions.

Let us recall that ¢7P-isoperimetric profiles of lampshufflers over polynomial growth groups are
known: )

In(x) \¢
In(In(x)) )
for any p > 1, when H has growth degree d > 1. This can be directly deduced from [SCZ21]
and [EZ21].

From our work, we can deduce the following bounds on profiles of lampjugglers.

Jp,Shuffler(r1) (X) = (

Corollary 5.7. Letp > 1. Let H be a finitely generated amenable group, whose ¢”- and €' -
isoperimetric profiles satisfy Assumption (x). Lets > 1 be an integer. Then the ¢P -isoperimetric
profile of Shufflers (H) satisfies

|
ipH (%) < Jp.Shuffler, (1) (X) < j1,u(In(x)).

Proof. For the upper bound, it suffices to apply Corollary 5.5, since Shuffler; (H) is naturally gen-
erated and has finite blocks.

Let us focus on the lower bound. From Corollary 5.6, we know that

(5.1 o (@ 1)) < jp,Shuffler, (1) (X)

where ¢(x) = x - Ashuffier, (11)(X) = x - (sx)!. It remains to find the asymptotics of ¢! (x). We have
by definition ¢! (x)(s¢~!(x))! = x, and from Stirling’s formula we know that

S(p—l(x) sp~1(x)
o e @~ o7 () T Ve TG
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Taking the logarithm yields In(x) = In (¢ ~1(x)(sp~(x))!) ~ s~ (x) In(sp~!(x)) and taking the
logarithm once more, it follows that In(In(x)) ~ In(s¢~!(x)). Combining these two equivalences,
this gives

In(x)
In(In(x))"
Using Lemma 5.3 and inequality (5.1), we deduce

1
JpH (%) < Jp,Shufflers (H) (X)

s~ l(x) ~

as claimed. The proof is complete. i

Remark 5.8. In the particular case where s = 1 and where H is amenable with j; ;(x) ~ In(x), the
upper bound on j; shufrier(rr) provided by this result is =~ In(In(x)), which is the same that one can
get by inverting the lower bound

Folshuftier (1) (X) = Vi ()1 = (&%)

obtained in [EZ21] in the case of an exponential growth group H. However, as we will see be-
low, this result is not optimal anymore when taking iteration of lampshufflers, since the growth
function of such iterations stay exponential, while the isoperimetric profile gets slower at each
iteration (see Proposition 5.11).

In particular, one deduces that, if H has polynomial growth of degree d > 1, the estimate on
Jp,shuffler(er) coming from [EZ21] is valid for any lampjuggler Shufflers(H), s > 2. Indeed, such a
lampjuggler contains a lampshuffler as a subgroup, so that

In(x) )31

Jp,shuffler, () (%) < jp,Shuffler (1) (X) = (m

by Theorem 2.2, and the lower bound follows from Corollary 5.7. In fact, we have more generally
the next consequence.

Corollary 5.9. Letp > 1. Let H be a finitely generated amenable group such that j, i (x) = ji,u(x).
Assume that

e either H has polynomial growth;
e oritstP-isoperimetric profile j, i satisfies Assumption (x) and j, (%) ~ jp,a(In(x)).
Then one has

Jp,Shufflers (H) (X) = Jp Shuffler () (X)
foralls > 1. i

Thus, lampjuggler groups often have the same ¢7P-isoperimetric profile as lampshufflers, even
if the two are not quasi-isometric. For instance, if H = Z4 :BS(1,n), d > 1, n > 2, then
Shuffler(H) and Shufflers (H) are not quasi-isometric (by [GT24a] and [Dum25]) but both have ¢7-
isoperimetric profile ~ j, y(In(x)) =~ In(In(In(x))).

From Corollary 5.7, we can deduce the ¢P-isoperimetric profile of lampshufflers over groups H
having isoperimetric profiles that satisfy

. In(x) :
Jp.H (m) ~ j,a(In(x))
for instance:
e Solvable Baumslag-Solitar groups BS(1, n), n > 2, have ¢P-isoperimetric profile ~ In(x).

Thus Shuffler(BS(1, n)) has ¢”-isoperimetric profile ~ In(In(x)). The same applies for
lamplighters F : Z, where F is a non-trivial finite group;
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e more generally, lamplighters F : Z¢, where d > 1 and F is non-trivial and finite, have £”-
isoperimetric profile ~ (In(x)) 4. In this case, we get that

. 1
Jp,shuffler(rizd) (X) = (In(In(x)))@ .

=

e ford > 1, the group H = Z 7% has €”-isoperimetric profile ~ (%) , so that

| In(ln(x)) |
Ipshuer(ziz) (¥) = (ﬁ) '

Example 5.10. For any non-decreasing function f: R, — R, such that x +— 7y is non-
decreasing, Brieussel and Zheng constructed in [BZ21] a finitely generated group H with expo-
nential volume growth having ¢”-isoperimetric profile j, ;(x) = ]% It is proved in [Corr24]
that j, y satisfies Assumption (x) (see the discussion right after Corollary 4.1 in [Corr24]). Lastly,

H also satisfies ()
. n(x .
i ) = 0

This follows from the fact that f preserves equivalents: if g, h: R, — R, are equivalent, then
(1-¢)h(x) < g(x) < (1+ ¢)h(x)for some ¢ > 0 and for large enough x, so that
F((1=¢e)h(x)) < f(g(x)) < f((1+¢e)h(x))
since f is non-decreasing. Since (1 — €)h(x) < h(x) < (1 + €)h(x), one has also
(1-¢€)h(x) < h(x) < (1+é&)h(x)
f((L=e)h(x)) = f(h(x)) = f((1+e)h(x)

since x — i3] is non-decreasing, and thus

(1 -¢e)f(h(x)) < f((1-e)h(x)) < f(g(x)) < f((1+e)h(x)) < (1+¢&)f(h(x))

foralllarge enough x, whence f(g(x)) ~ f(h(x)). Thus, we may apply Theorem 5.7, and we obtain
that

. N In(In(x))
Ip,Shuffler(r) (X) = Fn(n(0))

Iterated lampshufflers. For a group H and an integer n > 0, let Shuffler®” (H) denote the n-th
iterated lampshuffler over H, defined as

Shuffler®” (H) := Shuffler(Shuffler(. .. Shuffler(H))).
if n > 1, and Shuffler®®(H) := H.
For such groups, we show the following estimates.
Proposition 5.11. Letp > 1. Let H be a finitely generated amenable group whose £ -isoperimetric
profile j, u satisfies Assumption (x). Suppose that

o (%) = (W) and i (x) = ju1r (o).
Then, we have

Jp,shuffier (1) (X) = jip,a(In°" (x))
foralln > 1.

Here, recall that In°*(x) := In(In(In(...In(x)))) denotes the k-th iteration of the logarithm with
itself, with the convention that In° is the identity.
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Proof. Let p > 1. We prove the statement by induction over n. For n = 0, it clearly holds, and
the case n = 1 is settled by Corollary 5.7. Now, assume that it holds for some n > 0, so that
Jp,shuffierr (1) (X) = jpu(In°"(x)) for any H satisfying the assumptions of the statement. Then,
note that Shuffler(H) is finitely generated, amenable, and since its ¢P-isoperimetric profile is
~ jpu(In(x)) and that j, ; satisfies Assumption (%), j, shuffler(zr) Satisfies Assumption (x) and
jp’Shufﬂer(H) ~ j]_'Shufﬂer(H) as well. Additionally, note that

|
Jp,Shuffler (H) (%) = jp i (In°?(x) = In(x)) = j, m(I0°*(x)) = jp shuffler(zr) (I0(x))

where the second asymptotic equivalence follows from the combination of In°?(x) — In®3(x) =~
In°%(x) and Lemma 5.3. Thus, applying the inductive assumption and Corollary 5.7, we obtain
Jp,shuffier+) (11) (X) = Jp,Shuffler" (Shuffler (1)) (X)
=~ jp Shuffler(i) (In°" (x))
= jp,u(In(In®"(x)))
= jp,u (In°""* Y (x))
and the induction is complete. i

In(x)
In(In(x))

not hold for polynomial growth groups. Thus, for this class, we compute isoperimetric profiles of
iterated lampshufflers separately.

However, note that the assumption that j, ( ) ~ jpu(In(x)) in Proposition 5.11 does

Proposition 5.12. Let H be a finitely generated group of polynomial growth of degreed > 1. Then
one has
. (@) )
JpShuffier (1) (X) = (m)
foranyn > 1 and any real numberp > 1.

Proof. The case n = 1 is settled by [EZ21]. For n > 2, it suffices to note that Shuffler(H) satisfies
the assumptions of Proposition 5.11, and the latter provides

I (x) \4
1no(n+1) (x)

as claimed. O

JpShuffler (1) (%) = ]y Shuffler™ 1 (Shuffier (1) () = JpShuftter (1) (I0°" 71 (x)) = (

The assumption j, ( %) ~ j,u(In(x)) from Proposition 5.11 is satisfied for many known
behaviours of profiles, and thus motivates the next question.
Question 5.13. Is it true that all finitely generated amenable groups which do not have polyno-
mial growth satisfy j, (%) ~ jpr(In(x))?

Remark 5.14. The same strategy shows that if H is a finitely generated amenable group whose
isoperimetric profiles satisfy Assumption (%) and

: In(x) : : :
Jp.H (m) = jpu(In(x)) and jp g (x) = j1,u(x),
then one has

Jp,Shuffler,, (Shufflers, (..Shufflery, (1)) (%) = jp,ir(In°" (x))

for anyintegers n > 1 and sy, ..., s, > 1, and any real number p > 1.

31



ISOPERIMETRIC PROFILES OF LAMPLIGHTER-LIKE GROUPS
5.3. Lampdesigners.

Lampdesigners are close to lampjuggler groups, and in fact if F is finite, Designery(H) is a sub-
group of Shuffler|z (H), via the map

Designerp(H) — Shuffler|z (H)
((f,0),h)  +— (o', h)

where, given a pair (f,0) € Fy FSym(H), o’ is the permutation of H x F given by o’ (h,i) =
(o(h), f(h)i). Hence, from Theorem 2.2 and Proposition 4.1, we get directly a lower bound on
¢P-isoperimetric profiles of lampdesigners, namely

jp,Shuferr|F|(H) (x) < jp,DesignerF(H) (x)

Additionally, note that Designer(H) contains Shuffler(H) as a subgroup (and also as a quotient),
hence

jp,DesignerF (H) (X) < jp,ShufFIer(H) (X)
Moreover, recall that, when H satisfies j, i (x) =~ ji,z(x) and one of the two hypotheses:

e H has polynomial growth;
e jp,u satisfies Assumption (x),

. In(x) .
Jp.H (m) ~ jpu(In(x)),

then Corollary 5.9 ensures that Shuffler|z (H) and Shuffler(H) have same ¢”-isoperimetric profile,
and thus:

Corollary 5.15. LetF bea non-trivial finitegroup. Letp > 1. Let H be a finitely generated amenable
group such that j, g (x) = j1,u1(x). Assume that one of the following holds:

e H has polynomial growth;
e jpu has Assumption (x) and satisfies

. In(x) .
Jp.H (m) = ]p,H(ln(x))-

Then one has
Jp,Designery.(71) (X) = jp,Shuffler(21) (X)-

Furthermore, we can also deduce ¢7-isoperimetric profiles of iterated lampdesigners.

5.4. Lampcloners and lampupcloners.

Let us now turn to lampcloners and lampupcloners over finite fields.

Corollary 5.16. Letp > 1. Let H be a finitely generated amenable group whose € -isoperimetric
profile j, i satisfies Assumption (x). Letf be a finite field. Then one has

it (VIRG0) < i cloners 1) (1) < i (In()).

Proof. The upper bound directly follows from Corollary 5.5, so we focus on the lower bound.
We know from Corollary 5.6 that we must determine the asymptotic behaviour of ¢!, where
@(x) =X+ Acioner; (1) (). By definition, we have that ¢~ (x) - Acioner; (1) (¢~ (x)) = x, and thus

In(¢ ™" () + In(Acioner, (1) (¢ (x))) = In(x).
From [GT24a], In(Acioner; (1) (¥)) ~ C - y? for some C > 0, so the above equation tells us that

¢~ (x)? = In(x)
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whence ¢~!(x) = yIn(x). From Lemma 5.4, it follows that j, (¢~ (x)) = j,u (\/ln(x)), and we
are done. m|

From here, we then directly deduce the following consequence.

Corollary 5.17. Letp > 1. Let H be a finitely generated amenable group whose €” -isoperimetric
profile j, y satisfies Assumption (x). Let t be a finite field. If j,u (\/M) ~ j1p(In(x)) and
Jp.u (%) = jiu(X), then
Jp,Clonerg (1) (X) = jp,u (In(x)).
This corollary applies to many groups that have slow profiles, for instance:

e Baumslag Solitar groups BS(1, n), n > 2, whose ¢”-isoperimetric profile is ~ In(x). Thus
Cloner¢(BS(1, n)) has ¢€”-isoperimetric profile ~ In(In(x)) for any n > 2 and finite field f;
e Thelamplighter F:%, where X has polynomial growth of degree d > 1, has ¢”-isoperimetric

profile ~ (ln(x))é, whence

jp,CIonerf (FX) ()C) = IH(IH(X)) % .

In the polynomial growth case, we get the following bounds.

Corollary 5.18. Let H be a finitely generated group of polynomial growth of degreed > 1. Letf be
a finite field. Then we have

1. 1
(In(X))27 < jip,Clonere (1) (¥) < (In(x))4
for any real numberp > 1.

The same result holds for Upcloners (Z¢), where Z¢ is equipped with the lexicographic order.

Corollary 5.19. Letd > 1. Consider 2% with its lexicographic order. Let T be a finite field. Then we
have ) )

(In(x))2d < jp,UpcIonerf(Zd)(x) < (In(x))4
for any real numberp > 1.

Inspired by the case of lampshufflers, we would expect that, when H has polynomial growth of
degree d > 1, the ¢P-isoperimetric profile of Cloners(H) is the lower bound that we found in the
above statement, namely (In(x))2a. Recall that for lampshufflers, we applied the upper bound
from [EZ21] which is still optimal in the polynomial growth case, but its proof seems difficult to
generalise for lampcloners.

Remark 5.20. We can slightly improve the upper bound in Corollary 5.18, since for any group
H, Shuffler(H) is a subgroup of Cloners(H), considering the linear automorphisms permuting the
vectors of the canonical basis provided by H. Hence, if H has polynomial growth of degree d > 1,
we have )
. In(x) \4
<= .
Jp,Cloners (H) (x) (IH(ID(X)))
Iterated lampcloners. Fora group H and aninteger n > 0, let Cloner;” (H) denote the n-thiterated
lampcloner over H, defined as

Cloner{" (H) := Clonerg(Clonerg(... Cloners (H))).

ifn > 1, and CIonerFO(H) =H.
A similar strategy as the one above for iterated lampshufflers allows one to prove the next state-
ment.
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Corollary 5.21. Letp > 1. Let H be a finitely generated amenable group whose €” -isoperimetric
profile j, i satisfies Assumption (x). Suppose that

i (VI = fp1 () @nd () = jup ().
Then, we have
Jp,Cloners” (a1 (X) = Jp,1u (In"" (X))
foralln > 1. o

Finally, Corollary 5.17 motivates a similar question as Question 5.13.

Question 5.22. Is it true that all finitely generated amenable groups which do not have polyno-
mial growth satisfy j, (\/m(x)) ~ i (In(x))?

6. APPLICATIONS TO QUASI-ISOMETRIC CLASSIFICATIONS AND REGULAR MAPS

This section is dedicated to our applications about the existence of regular maps between halo
products and their iterated versions. It relies on computations realised in Section 5. In fact, for
simplicity and conciseness, we will be focusing mainly on lampshufflers, but analogous state-
ments can be derived for lampjugglers, lampdesigners, lampcloners and lampupcloners.

Let us first distinguish iterated lampshufflers over amenable groups.

Corollary 6.1. Letn, m > 1. Let H be a finitely generated amenable group. Assume that one of the
following holds:

(i) H has polynomial growth of degreed > 1;
(ii) j1pg satisfies Assumption (%), j1.u (%) ~ ji g (In(x)) and the following property for any
integersk,f > 0:
Jru (I (x) = jp(In*(x)) = k = €.
Then Shuffler® (H) and Shuffler®™ (H) are quasi-isometric if and only if n = m.

Proof. Suppose that Shuffler®” (H) and Shuffler”(H) are quasi-isometric. In particular, their
isoperimetric profiles are asymptotically equivalent, and if H has polynomial growth, we get

n(x) \* [ In""(x) |7
1no(n+1)(x) - lno(m+1)(x)

by Proposition 5.12, which in turn implies n = m. If we are in case (ii), then by Proposition 5.11,

Shuffler®” (H) has ¢!-profile ~ j; 5 (In°"(x)) and Shuffler®” (H) has ¢'-profile =~ j; 5 (In°"(x)). Thus

n = m using our assumption, and we are done. o
In practice, assumptions of (ii) are easy to check. It holds for instance for any amenable group

a
whose profile is of the form j; y(x) ~ (ln"k (x)) for @ > 0 and k > 0, such as solvable Baumslag-
Solitar groups or lamplighters over polynomial growth groups.

In fact, the isoperimetric profile being monotonuous under regular maps between finitely gen-
erated amenable groups, we get more generally:

Corollary 6.2. Let n,m > 1. Let H be a finitely generated amenable group whose isoperimetric
profile j, y satisfies Assumption (x). Suppose that ji y (%) ~ j1.y(In(x)) and the following
property holds for any integers k, € > 0:

ju(In®(x)) < jiu(In* (x)) = k < L.
Then there exists a regular map from Shuffler®” (H) to Shuffler°” (H) if and only ifn < m. i
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We have similar consequences at the other side of the spectrum:

Corollary 6.3. Letn, m > 0. Let A and B be infinite virtually abelian finitely generated groups, with
growth degrees a and b respectively. Then the following are equivalent:
(i) Shuffler°”(A) and Shuffler°” (B) are quasi-isometric.
(ii) n=manda =b.
(iii) Shuffler”(A) and Shuffler®™ (B) are biLipschitz equivalent.

Proof. The implication (iii) = (i) is obvious.

We prove (i) = (ii). Assume that Shuffler®” (A) and Shuffler®™ (B) are quasi-isometric, so that they
have asymptotically equivalent isoperimetric profiles. By Proposition 5.12, we then have

6.1) (—lnon(") )‘11 . (—lnom(") )}’

1n0(n+1)(x) 1n0(m+1)(x)

and taking the logarithm, it follows that

1n°" (x) 0" (x)
In|l—————|=In{———].
1n0(n+1)(x) 1n0(m+1)(x)
The left-hand side is equivalent to In°"*V) (x) and the right-hand side is equivalent to In°"*) (x),
sothatn +1 =m + 1, i.e. n = m. Re-injecting this information in (6.1) now implies that a = b.

If n = mand a = b, then A and B are both biLipschitz equivalent to Z¢ [Dum25], and thus A and B
are biLipschitz equivalent. Thus, by [GT24a], there is a biLipschitz equivalence from Shuffler(A)
to Shuffler(B). Iterating this, we get a biLipschitz equivalence

Shuffler®”(A) — Shuffler®” (B)
as claimed. This shows (ii) = (iii) and concludes the proof. i

Remark 6.4. For the broader class of virtually nilpotent groups, some implications still hold and
some may fail. For instance, (i) = (ii) remains true, but the converse is false. For instance, Z*
and the Heisenberg group H over Z both have growth degree 4, but Shuffler(zZ*) and Shuffler(H)
are not quasi-isometric by [GT24al], since Z* and H are not biLipschitz equivalent (e.g. they have
different asymptotic dimensions).

For more general maps (e.g. regular maps), the isoperimetric profile is not sufficient to detect
a constraint on polynomial growth degrees. However, asymptotic dimension does provide an in-
equality since, if A has finite asymptotic dimension, then asdim(Shuffler(A)) = asdim(A). Indeed,
since A is a subgroup of Shuffler(A), one has asdim(A) < asdim(Shuffler(A)), and on the other
hand, since Shuffler(A) fits into a short exact sequence with kernel FSym(A), whose asymptotic
dimension is 0 as it is locally finite, and quotient A, one also has asdim(Shuffler(A)) < asdim(A)
(we refer the reader to the nice survey [BDO08] for all these facts on asymptotic dimension). Iter-
ating, we get

asdim(Shuffler®”(A)) = asdim(A)

foralln > 0.
Note also that, if A is virtually abelian, then its asymptotic dimension coincides with its growth
degree.

Corollary 6.5. Letn and m be two natural integers. Let A and B be infinite virtually abelian finitely
generated groups, with growth degrees a and b respectively. If there exists a regular map

Shuffler®”(A) — Shuffler°™(B)

thenn <manda < b.
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Proof. Assume that such a map exists. If n = 0 there is nothing to prove, so we assume that n > 1.
In this case, we cannot have m = 0, because a group of exponential growth cannot regularly em-
bed into a polynomial growth group. Hence m > 1 as well. Now, by Theorem 2.3 and Proposi-
tion 5.12, one has

1n°™ (x) )i ( In°" (x) )i
6.2 () V()
( ) (lno(m+1)(x) 1no(n+1)(x)

and taking the logarithm implies

In°"(x) In°"(x)
In|l———— | < In|——————].
1no(m+1)(x) 1no(n+1)(x)
Theleft-hand sideis ~ In°"*Y (x), and the right-hand side is ~ In°"*Y (x), so it follows that n+1 <
m+1,i.e. n < m. Additionally, since asymptotic dimension is monotonuous under regular maps
one gets
a = asdim(A) = asdim(Shuffler®” (A)) < asdim(Shuffler®”(B)) = asdim(B) = b

as claimed. o

Remark 6.6. On the other hand, for more general polynomial growth groups A and B, we can only
conclude that the existence of a quasi-isometry between Shuffler®” (A) and Shuffler®” (B) imposes
n =m,a = b and asdim(A) = asdim(B), and the existence of a regular map

Shuffler” (A) — Shuffler°™ (B)
implies n < m and asdim(A) < asdim(B).
As an immediate consequence of Corollary 6.5, we have the following.

Corollary 6.7. Letn, m > 0. Let A and B be infinite virtually abelian finitely generated groups, with
growth degrees a and b respectively. Then the following are equivalent:
(i) the three equivalent assertions of Corollary 6.3 are satisfied;

(ii) there exist a regular map from Shuffler®”(A) to Shuffler"™(B), and a regular map from
Shuffler®™(B) to Shuffler®”(A).

Thus, asymptotic dimension is an obstruction to the existence of a regular map Shuffler(Z4) —
Shuffler(z*) when d > k. Hence, in the spirit of [BST12], a natural question arises: can we also
rule out the existence of such maps if we increase the asymptotic dimension of the target space,
for instance with a polynomial growth factor? It turns out that the answer is positive, and that
the isoperimetric profile still gives an obstruction, whereas asymptotic dimension becomes in-
efficient.

Indeed, thanks to the following lemma, under the assumption that j; y > j1,6, we have general
estimates on the isoperimetric profile of G x H in terms of j; ¢ and ji y.
Lemma 6.8. LetG and H be finitely generated amenable groups. If j1 u(n) = ji,c(n), then one has
jre(Vn) < jrexu(n) < jue(n).

Proof. The estimate j; g« (1) < j1,6(n) is a consequence of the fact that G is a subgroup of G x H
and Theorem 2.2. Let us focus on the other inequality. Fix n € Nand subsets A, c G, B,, ¢ H that
realise j; ¢(n) and j; g (n) respectively, i.e. |4,|, |B,| < n and

|An| |Bn|
|6GAn| |aHBn|.
Then A, X B, ¢ G x H has cardinality < n?, and its boundary is given by

06xH(An X By) = (0gA, X By) U (A X 0yBy)

j16(n) = , Juu(n) =
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whence |0¢xp (An X Bp)| < |0GAn| - |Bu| + |An| - |0 By,|. Thus one gets
|0GxH (An X Bp)| < |0GAn| - |Bn| + |An| - 10uBn|l _ |0GAn| | |0uBnl

< = +
|An X By |An|| Byl |An| | B
and it follows that
. 9 |An X By 1 1
Jiexu(n”) = > = )
’ [0GAn| |01 Ba| 1 1
10G (An X Bn)| |(j\n| + |P1§n| Jic(n) + Jiu(n)

Now, using Lemma 5.4, there exists a positive constant K > 0 such that

. 1 1
Jrexm(x) = 7 = : - .

;1 - + 1,1
Jre(Kvx)  jiu(Kvx) jl,G( K2x) ]LH( K2x) Jie(Wx)  jia(x)

for all x large enough. By assumption, ji i * ji,¢, so that

) 1 )
Jioxm 7 —5— = ji6(V)
Jjue (V)
as claimed. O

Thus, if additionally the isoperimetric profile of G satisfies ji,g (/) =~ ji1,¢(), then ji g = ji,6-
This happens for many groups G that have slow enough profiles, for instance:

¢ Any polycyclic group with exponential growth, and more generally any GES group with
exponential growth [Tes13];
e F %, or Shuffler(Z), where F is finite and X has polynomial growth;

e Shuffler®” (H), where H has profile j; ;(x) = (ln"k(x))a, for some a > 0 and integer k > 1.

As a concrete example, we have for instance:

Corollary 6.9. Letd, k,p > 1 be three integers. There exists a regular map
Shuffler(Zz%) —s 7P x Shuffler(Z*)

ifandonlyifd < k. o

Finally, we want to compare lampshufflers to lamplighters. We already know from Proposi-
tion A.2 that a wreath product over a subgroup of H coarsely embeds into Shuffler(H). In [GT24a],
given two groups H and G satisfying some mild assumptions, it is proved that Shuffler(H) does

not quasi-isometrically or coarsely embed into a lamplighter E: G. Our computations allow us to
prove an iterated version of this result for free abelian groups: there is no regular map

Shuffler™(2%) — 7/27 (222 (... (Z2)2Z : Z%)))
where the wreath product is iterated n times. In fact, we have more generally the following.

Corollary 6.10. LetG and H be finitely generated amenable groups. Suppose that there is a regular
map
Shuffler(H) — Z/2Z 1 (Z/2Z (- - -1 (Z]2Z G))),
where the wreath product is iterated n times, n > 1. Then the following holds.
(i) IfH has polynomial growth of degreed > 1, then
Jia(x)

(In(x)#
(ii) If j1,u satisfies Assumption (x) and ji g (%) ~ ji1,u(In(x)), then

Ji6(x) <

J1,6(x) < jiua(x).
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Proof. In case (i), we get

In°" (x) )‘11 _ Jjia(In®"(x))

o(n+1) - 1-
In (x) (lno(n+1)(x))d

Using Assumption (x) for the logarithm and for j; 5, we have

Jue(In®"(x)) < (

(lno(n+1) (X)) d

and the change of variable x” = In°"(x) gives the result. In case (ii), we get rather

Jre(In*"(x)) = O (j1,u(In"" (x)))
and we conclude similarly. i

J16(In*"(x)) =0

We get the following consequence in the case of polynomial growth groups.

Corollary 6.11. Letd, k,n > 1, and let G and H be finitely generated groups of polynomial growth
with growth degrees k and d respectively. If there is a regular map

Shuffler (H) — Z/2Z 2 (Z]2Z (- - -1 (Z]2Z G)))
then d < k, where the wreath product is iterated n times.

Note that this statement cannot be reached with methods from [GT24a], even for quasi-
isometric or coarse embeddings, since the thick bigon property used in [GT24a] is not stable
under iterations of lampshufflers.

1
Proof. By Corollary 6.10, we have Xt < (ﬁ) “, which immediately implies d < k. |

Note that, if G is a proper subgroup of H, then an iteration of Proposition A.2 ensures that
Shuffler"” (H) contains Z/2Z (Z/2Z  (...(Z/2Z G))) (iterated n times) as a subgroup, and thus
we get a regular map

Z/2Z ((Z)2Z 2 (- 1 (Z)2Z 1 G))) —> Shuffler (H).

APPENDIX A. LAMPLIGHTER SUBGROUPS IN LAMPSHUffLERS

In the article, the strategy for getting optimal upper bounds on the isoperimetric profile of halo
productsis to find subgraphs that are quasi-isometric to lamplighter graphs. In this appendix, our
aim is to prove that, under additional mild algebraic assumptions on the base group, we can find
lamplighter subgroups inside lampshufflers.

For other halo products, such as lampjugglers, lampdesigners and lampcloners, we already
observed in Section 3 that they contain wreath products over the same base group as subgroups.
Let us recall the following definition: we say that a non-decreasing map /: R, — R, satisfies
Assumption (x) if
VC >0, h(Cx) = O(h(x)).
The motivation for this strategy comes from the following result, due to Silva. In the upcoming
result (Proposition A.2), we will use the main idea of its proof.

Proposition A.1 ([Sil24]). Let H be an infinite non co-Hopfian group. Then, for any finite group F,
Shuffler(H) has a subgroup isomorphictoF H.
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Recall that a group H is co-Hopfianif any injective morphism H — H is also surjective. Equiv-
alently, a group is co-Hopfian if it has no proper subgroup isomorphic to itself.

Many amenable groups are known to be non co-Hopfian, including:

e 7%, d > 1, and more generally any finitely generated abelian group;
e Some torsion-free nilpotent groups, such as the Heisenberg group over the inte-
gers [Cornl6];
e Solvable Baumslag-Solitar groups BS(1, n), n > 1 [NP11];
e Wreath products N ¢ G where at least one of the two groups is not co-Hopfian [BFF24];
e Houghton’s groups H,, n > 2 [BCMR16];
e The Grigorchuk’s group [Lys85].
In the non-amenable side, they also include for instance non-abelian free groups [dIH00] or
right-angled Artin groups [Cas16].
Thus, using Theorem 2.2, it directly follows that for H an amenable and non co-Hopfian group,
one has already
Jp.shuffler(z1) (X) < j1,1(In(x))
when j; y satisfies Assumption (x).
In fact, we can derive from Silva’s proof the following more general result.

Proposition A.2. Let H be a group. If K is a proper subgroup of H, then Shuffler(H) contains a
subgroup isomorphic to FSym([H : K]) ' K.

Proof. Denote [H : K| :=m € {2,3,...} U {o},and let S c H be a set of representatives of H/K,
so that |S| = m and we have a partition
H=| |ks.

keK
Consider then

G :={(o,h) € Shuffler(H) : h € K, o(k’S) =k’S forall k' € K}.

It is not hard to check that G is a subgroup of Shuffler(H), and given o € FSym(H) satisfying
o(k’S) = k’Sforall k' € K, we can define a map

K — FSym(m)
for (k7o)

Then, a direct computation shows that fi., = k - f; and fyor = fof; forany k € Kandany o, 7 €
FSym(H) satisfying o (k’S) = k’S for all k’ € K. This implies that the map

G — FSym(m) K
(o,h) +— (fo, h)

is a group isomorphism. This concludes the proof. i

Therefore, one recovers Corollary 5.5 for lampshufflers:

Corollary A.3. Letp > 1. Let H be an amenable finitely generated group with a finitely generated
proper subgroup K such that j, i (x) = jp x(x). If j1,u satisfies Assumption (x), then one has

Jp.shuffter(e) (X) < jp,u (In(x)).

The corollary applies of course to any non co-Hopfian group, but beyond, also to any finitely
generated group H having at least one finite-index subgroup K. One algebraic criterion to ensure
the latter is to be non-perfect.

Definition A.4. Let H be a group. We say that H is perfect if [H, H] = H, where [H, H] is the
commutator subgroup of H.
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Examples of perfect groups include finite alternating groups A, for n > 5 and linear groups
SL(n, K) for n > 3 and non-commutative fields K. Among the three Thompson’s groups F c T C
V, T and V are simple, thus perfect, as well as the commutator subgroup [F, F] of F [CFP96].

As mentioned above, we are in fact more interested in groups that are not perfect, due to the
next statement.

Lemma A.5. Let H be a finitely generated group which is not perfect. Then H has a proper finite-
index subgroup.

Proof. As H is not perfect, [H, H] is a proper subgroup and the quotient H/[H, H] is a non-trivial
abelian finitely generated group. It has therefore a proper finite-index subgroup, and lifting the
latter provides a proper finite-index subgroup for H, that contains [H, H]. i

On the amenable side, the class of non-perfect groups is huge. It includes for instance

e All solvable groups, in particular nilpotent and polycyclic groups;

e Lamplighters, lampshufflers and lampjugglers over amenable non-perfect groups;

e More generally, any semi-direct product N < Q where N and Q are amenable and Q is
non-perfect, as well as any subgroup of N < Q;

e Houghton’s groups H,, n > 2.

Henceforth, for an amenable non-perfect group H, Corollary A.3 directly provides an upper
bound on the ¢”-isoperimetric profiles of Shuffler(H).

We emphasize here that Corollary A.3 can also cover cases that are not covered by Proposi-
tion A.1, since they are indeed examples of finitely generated torsion-free nilpotent groups that
are co-Hopfian [Bel03].

It is also worth mentioning that there do exist amenable perfect groups. Such groups have
been constructed by Juschenko and Monod in [JM13], and are even simple. Thus Corollary A.3
do not apply to them, and on the other hand it seems to be an open problem whether they are
co-Hopfian or not; see the list of open questions in [Corn14]. Note also that we do not know the
asymptotic behaviour of the isoperimetric profiles of these groups.

Remark A.6. As pointed out above, lampshuffler groups over non-perfect groups are themselves
non-perfect. This simply follows from the set inclusions

[Shuffler(H), Shuffler(H)] ¢ FSym(H) x [H, H] € Shuffler(H).

In fact, it is true more generally that a lampshuffler Shuffler(H) over a non-trivial group H is
never perfect, regardless of the perfectness of H. Indeed, since the action of H on FSym(H) pre-
serves the parity of the permutations, the commutator subgroup of Shuffler(H) is contained in
A(H) x [H,H], where A(H) c FSym(H) is the set of even permutations. Since A(H) is not equal
to FSym(H) if |H| > 3, and since [H, H] is trivial if |[H| = 2, we thus see that Shuffler(H) is not equal
to its commutator subgroup.

Lastly, regarding lampshufflers, non co-Hopficity can also be used to deduce the isoperimetric
profile of iterated lampshufflers, since it is stable under iteration of lampshufflers:

Proposition A.7. IfH is not co-Hopfian, then Shuffler(H) is not co-Hopfian.

Proof. If H is not co-Hopfian, fix an injective morphism y: H — H which is not surjective, and
define the map

Shuffler(H) — Shuffler(H)
(0,8) +— (0,9(g))
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where, for any ¢ € FSym(H), o € FSym(H) is defined as

H — H
CIR {w(a(w‘l(g))) if g is in the image of y .
g otherwise

Then one checks directly that the correspondence o +— o is well-defined and that the following
two properties hold:

(i) oot =0o7foranyo,t € FSym(H);
(ii) p~o=vw(p) -oforanyp € H and o € FSym(H).
These two points imply that ¢ is a morphism, which is injective since  is, and which is not sur-
jective since y is not. O

Going further, it is also natural to ask whether these algebraic assumptions are preserved under
iteration of other halo products. First, it is immediate that a halo product over a non-perfect
group is not perfect, since the definition of the product law of Z H directly gives

|YH,¥H] c L(H) X [H,H]| ¢ &H,

as we pointed out in Remark A.6, in the special case of lampshufflers. In this remark, we also
pointed out that lampshufflers were in fact never perfect, using the parity of the permutations,
which is invariant by the action of the base group. Thus, for a general halo group ZH, itis enough
to find a non-trivial morphism from L(H) to an abelian group, which is invariant by the action of
the base group. For instance, for lampcloners, we can use the determinant of linear maps.

Regarding preservation of non-co-hopficity under iterations of halo products, we can only find
proofs in concrete examples. For lampcloners, we can adapt the above proof for lampshufflers.
Indeed, let us first note that a group morphism v: H — H gives rise to a linear automorphism
¥: Vg — Vg, by permuting the vector of the canonical basis given by H, and if v is injective but
not bijective, then so is v. Finally, it remains to define the map

Cloners(H) — Cloners(H)
(0,8)  +— (0,9(g)
where, for any 0 € FGL(H), 0 € FGL(H) is defined as
Vg — Wy
CE {1;7(0-(1;71(1;))) ifv € Vy is in the image of ¥ |,
v otherwise

and to check that ¢ an injective, but not bijective, group morphism.
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